Azpiroz Jon M, Ugalde Jesus M, Etgar Lioz, Infante Ivan, De Angelis Filippo
Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC), P. K. 1072, 20080 Donostia, Euskadi, Spain.
Phys Chem Chem Phys. 2015 Feb 28;17(8):6076-86. doi: 10.1039/c4cp04976d.
We present a density functional theory (DFT) study aimed at understanding the injection and recombination processes that occur at the interface between PbS QDs and TiO2 oxide nanoparticles with different morphologies. The calculated injection rates fall in the picosecond timescale in good agreement with the experiments. In addition, our simulations show that the (101) facet of TiO2 more favourably accommodates the QD, resulting in stronger electronic couplings and faster electron injections than the (001) surfaces. Despite this, the (101) slab is also more prone to faster electron recombination with the valence band of the QD, which can lead to overall lower injection efficiencies than the (001) surface.
我们展示了一项密度泛函理论(DFT)研究,旨在理解在具有不同形态的PbS量子点与TiO₂氧化物纳米颗粒之间的界面处发生的注入和复合过程。计算得到的注入速率处于皮秒时间尺度,与实验结果吻合良好。此外,我们的模拟表明,TiO₂的(101)晶面更有利于容纳量子点,与(001)表面相比,会产生更强的电子耦合和更快的电子注入。尽管如此,(101)平板也更容易与量子点的价带发生更快的电子复合,这可能导致总体注入效率低于(001)表面。