Suppr超能文献

通过控制金属卤化物钙钛矿壳层厚度提高硫化铅量子点敏化太阳能电池的性能

Enhanced performance of lead sulfide quantum dot-sensitized solar cells by controlling the thickness of metal halide perovskite shells.

作者信息

Seo Gabseok, Kim Shinhyun, Choi Hyunseok, Kim Min-Cheol

机构信息

Frontier Energy Solution Corporation, Seoul National University, Seoul 08826, Republic of Korea.

School of Mechanical Engineering, Pusan National University, Busan 46241, South Korea.

出版信息

Heliyon. 2023 Sep 19;9(10):e20276. doi: 10.1016/j.heliyon.2023.e20276. eCollection 2023 Oct.

Abstract

The metal halide perovskite CHNHPbI (MAP) can be applied as the shell layer of lead sulfide quantum dots (PbS QDs) for improving solar power conversion efficiency. However, basic physics for this PbS core/MAP shell QD system is still unclear and needs to be clarified to further improve efficiency. Therefore, in this study, we investigate how MAP shell thickness affects device performance and dynamics of charge carriers for PbS QD-sensitized solar cells. Covering the PbS QDs with the MAP shell layers of an appropriate thickness around 0.34 nm greatly suppresses charge carrier recombination at surface defects along with improved carrier transport to neighboring oxide and polymer layers. Therefore, this MAP shell thickness provides the highest open-circuit voltage, short-circuit current density, and fill factor for solar cells. Overall power conversion efficiencies of these solar cells reached about 4.1%, which is about six-fold higher than that for solar cells without MAP (about 0.7%). Additionally, use of the MAP shell layers can prevent oxidation of PbS QDs and, therefore, makes a degradation of solar cell performance slower in air.

摘要

金属卤化物钙钛矿CHNHPbI(MAP)可作为硫化铅量子点(PbS QDs)的壳层,用于提高太阳能转换效率。然而,这种PbS核/MAP壳量子点体系的基本物理原理仍不明确,需要进一步阐明以提高效率。因此,在本研究中,我们研究了MAP壳层厚度如何影响PbS量子点敏化太阳能电池的器件性能和电荷载流子动力学。用厚度约为0.34nm的合适MAP壳层覆盖PbS量子点,可极大地抑制表面缺陷处的电荷载流子复合,并改善载流子向相邻氧化物和聚合物层的传输。因此,这种MAP壳层厚度为太阳能电池提供了最高的开路电压、短路电流密度和填充因子。这些太阳能电池的整体功率转换效率达到约4.1%,比没有MAP的太阳能电池(约0.7%)高出约六倍。此外,使用MAP壳层可以防止PbS量子点氧化,因此,可使太阳能电池性能在空气中的降解速度变慢。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/10520828/bbe176d312d0/ga1.jpg

相似文献

1
Enhanced performance of lead sulfide quantum dot-sensitized solar cells by controlling the thickness of metal halide perovskite shells.
Heliyon. 2023 Sep 19;9(10):e20276. doi: 10.1016/j.heliyon.2023.e20276. eCollection 2023 Oct.
2
Enhancing the Performance of Sensitized Solar Cells with PbS/CH3NH3PbI3 Core/Shell Quantum Dots.
J Phys Chem Lett. 2014 Jun 5;5(11):2015-20. doi: 10.1021/jz500815h. Epub 2014 May 23.
3
Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots.
Phys Chem Chem Phys. 2014 Jan 14;16(2):736-42. doi: 10.1039/c3cp54145b.
4
Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers.
ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26142-26152. doi: 10.1021/acsami.7b06552. Epub 2017 Sep 22.
5
Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.
ACS Appl Mater Interfaces. 2016 Feb;8(7):4600-7. doi: 10.1021/acsami.5b10953. Epub 2016 Feb 15.
6
High-Performance Solid-State PbS Quantum Dot-Sensitized Solar Cells Prepared by Introduction of Hybrid Perovskite Interlayer.
ACS Appl Mater Interfaces. 2017 Nov 29;9(47):41104-41110. doi: 10.1021/acsami.7b12046. Epub 2017 Nov 16.

引用本文的文献

1
Self-powered, ultrabroad band photodetectors with large open circuit voltage using colloidal PbSe QDs.
Nanoscale Adv. 2025 May 20;7(13):4067-4076. doi: 10.1039/d5na00073d. eCollection 2025 Jun 24.

本文引用的文献

1
Observation of Enhanced Hole Extraction in Br Concentration Gradient Perovskite Materials.
Nano Lett. 2016 Sep 14;16(9):5756-63. doi: 10.1021/acs.nanolett.6b02473. Epub 2016 Aug 11.
3
Enhancing the Performance of Sensitized Solar Cells with PbS/CH3NH3PbI3 Core/Shell Quantum Dots.
J Phys Chem Lett. 2014 Jun 5;5(11):2015-20. doi: 10.1021/jz500815h. Epub 2014 May 23.
5
Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells.
Nat Nanotechnol. 2014 Nov;9(11):927-32. doi: 10.1038/nnano.2014.181. Epub 2014 Aug 31.
6
Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability.
J Am Chem Soc. 2013 Apr 10;135(14):5278-81. doi: 10.1021/ja400948t. Epub 2013 Mar 27.
8
Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%.
J Am Chem Soc. 2012 Feb 8;134(5):2508-11. doi: 10.1021/ja211224s. Epub 2012 Jan 27.
9
6.5% efficient perovskite quantum-dot-sensitized solar cell.
Nanoscale. 2011 Oct 5;3(10):4088-93. doi: 10.1039/c1nr10867k. Epub 2011 Sep 7.
10
Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress.
Adv Mater. 2011 Jan 4;23(1):12-29. doi: 10.1002/adma.201001491.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验