Tarapore Danesh, Lima Pedro U, Carneiro Jorge, Christensen Anders Lyhne
Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal. Instituto de Sistemas e Robótica, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal. Institut des Systèmes Intelligents et de Robotique, Université Pierre et Marie Curie 6, CNRS UMR 7222, F-75252, Paris Cedex 05, France.
Bioinspir Biomim. 2015 Feb 2;10(1):016014. doi: 10.1088/1748-3190/10/1/016014.
Fault detection and fault tolerance represent two of the most important and largely unsolved issues in the field of multirobot systems (MRS). Efficient, long-term operation requires an accurate, timely detection, and accommodation of abnormally behaving robots. Most existing approaches to fault-tolerance prescribe a characterization of normal robot behaviours, and train a model to recognize these behaviours. Behaviours unrecognized by the model are consequently labelled abnormal or faulty. MRS employing these models do not transition well to scenarios involving temporal variations in behaviour (e.g., online learning of new behaviours, or in response to environment perturbations). The vertebrate immune system is a complex distributed system capable of learning to tolerate the organism's tissues even when they change during puberty or metamorphosis, and to mount specific responses to invading pathogens, all without the need of a genetically hardwired characterization of normality. We present a generic abnormality detection approach based on a model of the adaptive immune system, and evaluate the approach in a swarm of robots. Our results reveal the robust detection of abnormal robots simulating common electro-mechanical and software faults, irrespective of temporal changes in swarm behaviour. Abnormality detection is shown to be scalable in terms of the number of robots in the swarm, and in terms of the size of the behaviour classification space.
故障检测与容错是多机器人系统(MRS)领域中两个最重要且在很大程度上尚未解决的问题。高效、长期运行需要对行为异常的机器人进行准确、及时的检测与处理。大多数现有的容错方法规定了正常机器人行为的特征,并训练一个模型来识别这些行为。因此,模型未识别的行为被标记为异常或有故障。采用这些模型的多机器人系统不能很好地过渡到涉及行为随时间变化的场景(例如,新行为的在线学习,或对环境扰动的响应)。脊椎动物免疫系统是一个复杂的分布式系统,即使在青春期或变态过程中机体组织发生变化时,它也能够学会耐受这些组织,并对入侵的病原体产生特异性反应,而所有这些都无需对正常状态进行基因硬编码的表征。我们提出了一种基于自适应免疫系统模型的通用异常检测方法,并在一群机器人中对该方法进行了评估。我们的结果表明,无论群体行为随时间如何变化,都能可靠地检测出模拟常见机电和软件故障的异常机器人。异常检测在群体中机器人的数量以及行为分类空间的大小方面都具有可扩展性。