Suppr超能文献

一项关于用于觅食任务中任务划分的机器人集群错误多样性的研究。

A study of error diversity in robotic swarms for task partitioning in foraging tasks.

作者信息

Buchanan Edgar, Alden Kieran, Pomfret Andrew, Timmis Jon, Tyrrell Andy M

机构信息

School of Physics, Engineering and Technology, University of York, York, United Kingdom.

School of Computer Science, University of Sunderland, Sunderland, United Kingdom.

出版信息

Front Robot AI. 2023 Jan 4;9:904341. doi: 10.3389/frobt.2022.904341. eCollection 2022.

Abstract

Often in swarm robotics, an assumption is made that all robots in the swarm behave the same and will have a similar (if not the same) error model. However, in reality, this is not the case, and this lack of uniformity in the error model, and other operations, can lead to various emergent behaviors. This paper considers the impact of the error model and compares robots in a swarm that operate using the same error model (uniform error) against each robot in the swarm having a different error model (thus introducing error diversity). Experiments are presented in the context of a foraging task. Simulation and physical experimental results show the importance of the error model and diversity in achieving the expected swarm behavior.

摘要

在群体机器人技术中,通常会假设群体中的所有机器人行为相同,并且具有相似(即便不是相同)的误差模型。然而,在现实中并非如此,误差模型以及其他操作中缺乏这种一致性,可能会导致各种涌现行为。本文考虑了误差模型的影响,并将群体中使用相同误差模型(均匀误差)运行的机器人与群体中每个具有不同误差模型(从而引入误差多样性)的机器人进行了比较。实验是在觅食任务的背景下进行的。仿真和物理实验结果表明了误差模型和多样性在实现预期群体行为方面的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec40/9845931/559731e74f8c/frobt-09-904341-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验