Lehrstuhl Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
Microbial Energy Conversion &Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany.
Nature. 2015 Apr 30;520(7549):706-9. doi: 10.1038/nature14109. Epub 2015 Feb 2.
The six-electron reduction of sulfite to sulfide is the pivot point of the biogeochemical cycle of the element sulfur. The octahaem cytochrome c MccA (also known as SirA) catalyses this reaction for dissimilatory sulfite utilization by various bacteria. It is distinct from known sulfite reductases because it has a substantially higher catalytic activity and a relatively low reactivity towards nitrite. The mechanistic reasons for the increased efficiency of MccA remain to be elucidated. Here we show that anoxically purified MccA exhibited a 2- to 5.5-fold higher specific sulfite reductase activity than the enzyme isolated under oxic conditions. We determined the three-dimensional structure of MccA to 2.2 Å resolution by single-wavelength anomalous dispersion. We find a homotrimer with an unprecedented fold and haem arrangement, as well as a haem bound to a CX15CH motif. The heterobimetallic active-site haem 2 has a Cu(I) ion juxtaposed to a haem c at a Fe-Cu distance of 4.4 Å. While the combination of metals is reminiscent of respiratory haem-copper oxidases, the oxidation-labile Cu(I) centre of MccA did not seem to undergo a redox transition during catalysis. Intact MccA tightly bound SO2 at haem 2, a dehydration product of the substrate sulfite that was partially turned over due to photoreduction by X-ray irradiation, yielding the reaction intermediate SO. Our data show the biometal copper in a new context and function and provide a chemical rationale for the comparatively high catalytic activity of MccA.
亚硫酸盐向硫化物的六电子还原是硫元素生物地球化学循环的关键点。八血红素细胞色素 c MccA(也称为 SirA)催化各种细菌进行异化亚硫酸盐利用的这一反应。它与已知的亚硫酸盐还原酶不同,因为它具有更高的催化活性和相对较低的对亚硝酸盐的反应性。MccA 效率提高的机制原因仍有待阐明。在这里,我们表明,与在有氧条件下分离的酶相比,缺氧纯化的 MccA 表现出 2 至 5.5 倍更高的特定亚硫酸盐还原酶活性。我们通过单波长异常分散法将 MccA 的三维结构确定到 2.2 Å 的分辨率。我们发现了一个具有前所未有的折叠和血红素排列的同三聚体,以及一个与 CX15CH 基序结合的血红素。异双金属活性位点血红素 2 具有一个紧邻血红素 c 的 Cu(I) 离子,Fe-Cu 距离为 4.4 Å。虽然金属的组合让人联想到呼吸血红素-铜氧化酶,但 MccA 的氧化不稳定的 Cu(I) 中心在催化过程中似乎没有经历氧化还原转换。完整的 MccA 在血红素 2 上紧密结合 SO2,SO2 是亚硫酸盐的脱水产物,由于 X 射线照射的光还原而部分转化,生成反应中间体 SO。我们的数据显示了生物金属铜的新背景和功能,并为 MccA 相对较高的催化活性提供了化学依据。