Crane B R, Siegel L M, Getzoff E D
Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.
Science. 1995 Oct 6;270(5233):59-67. doi: 10.1126/science.270.5233.59.
Fundamental chemical transformations for biogeochemical cycling of sulfur and nitrogen are catalyzed by sulfite and nitrite reductases. The crystallographic structure of Escherichia coli sulfite reductase hemoprotein (SiRHP), which catalyzes the concerted six-electron reductions of sulfite to sulfide and nitrite to ammonia, was solved with multiwavelength anomalous diffraction (MAD) of the native siroheme and Fe4S4 cluster cofactors, multiple isomorphous replacement, and selenomethionine sequence markers. Twofold symmetry within the 64-kilodalton polypeptide generates a distinctive three-domain alpha/beta fold that controls cofactor assembly and reactivity. Homology regions conserved between the symmetry-related halves of SiRHP and among other sulfite and nitrite reductases revealed key residues for stability and function, and identified a sulfite or nitrite reductase repeat (SNiRR) common to a redox-enzyme superfamily. The saddle-shaped siroheme shares a cysteine thiolate ligand with the Fe4S4 cluster and ligates an unexpected phosphate anion. In the substrate complex, sulfite displaces phosphate and binds to siroheme iron through sulfur. An extensive hydrogen-bonding network of positive side chains, water molecules, and siroheme carboxylates activates S-O bonds for reductive cleavage.
亚硫酸盐和亚硝酸盐还原酶催化硫和氮生物地球化学循环的基本化学转化。通过天然的西罗血红素和Fe4S4簇辅因子的多波长反常衍射(MAD)、多重同晶置换以及硒代蛋氨酸序列标记,解析了催化亚硫酸盐协同六电子还原为硫化物以及亚硝酸盐还原为氨的大肠杆菌亚硫酸盐还原酶血红蛋白(SiRHP)的晶体结构。64千道尔顿多肽内的二重对称性产生了一种独特的三结构域α/β折叠,该折叠控制辅因子的组装和反应性。SiRHP对称相关的两半之间以及其他亚硫酸盐和亚硝酸盐还原酶之间保守的同源区域揭示了稳定性和功能的关键残基,并确定了氧化还原酶超家族共有的亚硫酸盐或亚硝酸盐还原酶重复序列(SNiRR)。鞍形的西罗血红素与Fe4S4簇共享一个半胱氨酸硫醇盐配体,并连接一个意想不到的磷酸根阴离子。在底物复合物中,亚硫酸盐取代磷酸根并通过硫与西罗血红素铁结合。由带正电荷的侧链、水分子和西罗血红素羧酸盐组成的广泛氢键网络激活S-O键以进行还原裂解。