Suppr超能文献

通过仿生模拟研究细胞色素 c 氧化酶、一氧化氮还原酶和亚硫酸盐还原酶中异核活性部位的分子机制。

Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling.

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.

Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.

出版信息

Chem Soc Rev. 2021 Mar 1;50(4):2486-2539. doi: 10.1039/d0cs01297a.

Abstract

Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.

摘要

血红素-铜氧化酶 (HCO)、一氧化氮还原酶 (NOR) 和亚硫酸还原酶 (SiR) 分别催化 O2、NO 和 SO32- 的多电子和多质子还原。这些反应中的每一个对于通过呼吸代谢驱动细胞能量产生都很重要,HCO、NOR 和 SiR 进化为分别含有血红素/铜、血红素/非血红素铁和血红素-[4Fe-4S]中心的异核活性位点。这些天然酶的结构和反应的复杂性,以及它们的大尺寸和/或膜结合,使得全面了解负责这些活性位点催化特性的关键结构特征具有挑战性。在这篇综述中,我们总结了通过研究天然酶以及包含小分子或蛋白质的仿生模型获得的见解,在分子水平上更好地理解这些异核金属酶所取得的进展。通过比较它们类似的异核活性位点,进一步讨论了这些酶的反应选择性,并为进一步的研究提供了展望。

相似文献

2
Activation of O and NO in heme-copper oxidases - mechanistic insights from computational modelling.
Chem Soc Rev. 2020 Oct 19;49(20):7301-7330. doi: 10.1039/d0cs00877j.
3
Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates.
Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):712-724. doi: 10.1016/j.bbabio.2018.06.002. Epub 2018 Jun 5.
4
A structural and functional perspective on the evolution of the heme-copper oxidases.
FEBS Lett. 2014 Nov 3;588(21):3787-92. doi: 10.1016/j.febslet.2014.09.020. Epub 2014 Sep 26.
5
Design of Heteronuclear Metalloenzymes.
Methods Enzymol. 2016;580:501-37. doi: 10.1016/bs.mie.2016.05.050. Epub 2016 Jul 26.
6
The octahaem MccA is a haem c-copper sulfite reductase.
Nature. 2015 Apr 30;520(7549):706-9. doi: 10.1038/nature14109. Epub 2015 Feb 2.
7
The relationship between structure and function for the sulfite reductases.
Curr Opin Struct Biol. 1996 Dec;6(6):744-56. doi: 10.1016/s0959-440x(96)80003-0.
8
Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type.
J Inorg Biochem. 2005 Jan;99(1):194-215. doi: 10.1016/j.jinorgbio.2004.09.024.
9
The Siroheme-[4Fe-4S] Coupled Center.
Met Ions Life Sci. 2020 Mar 23;20. doi: 10.1515/9783110589757-016.
10
Substrate binding and the catalytic reactions in cbb3-type oxidases: the lipid membrane modulates ligand binding.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):724-31. doi: 10.1016/j.bbabio.2010.03.016. Epub 2010 Mar 20.

引用本文的文献

1
Copper Homeostasis and Cuproptosis As Potential Intervention Strategy in Atherosclerosis.
J Cardiovasc Transl Res. 2025 Jul 21. doi: 10.1007/s12265-025-10661-8.
2
A Bioinspired Nonheme Fe-(O)-Cu Complex with an = 1 Ground State.
J Am Chem Soc. 2024 Sep 11;146(36):24808-24817. doi: 10.1021/jacs.4c04492. Epub 2024 Jul 5.
3
Heme-copper and Heme O-derived synthetic (bioinorganic) chemistry toward an understanding of cytochrome c oxidase dioxygen chemistry.
J Inorg Biochem. 2023 Dec;249:112367. doi: 10.1016/j.jinorgbio.2023.112367. Epub 2023 Sep 9.
4
A sulfur monoxide complex of platinum fluoride with a positively charged ligand.
RSC Adv. 2023 Apr 21;13(18):12495-12501. doi: 10.1039/d3ra01932b. eCollection 2023 Apr 17.
5
Interactions of reactive sulfur species with metalloproteins.
Redox Biol. 2023 Apr;60:102617. doi: 10.1016/j.redox.2023.102617. Epub 2023 Jan 27.
6
Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.
Chem Rev. 2022 Jul 27;122(14):11974-12045. doi: 10.1021/acs.chemrev.2c00106. Epub 2022 Jul 11.
8
Nickel-mediated N-N bond formation and NO liberation nitrogen oxyanion reduction.
Chem Sci. 2021 Jul 13;12(31):10664-10672. doi: 10.1039/d1sc02846d. eCollection 2021 Aug 11.
9
Protein Assembly by Design.
Chem Rev. 2021 Nov 24;121(22):13701-13796. doi: 10.1021/acs.chemrev.1c00308. Epub 2021 Aug 18.

本文引用的文献

1
The active form of quinol-dependent nitric oxide reductase from is a dimer.
IUCrJ. 2020 Mar 21;7(Pt 3):404-415. doi: 10.1107/S2052252520003656. eCollection 2020 May 1.
2
Functional Models for the Mono- and Dinitrosyl Intermediates of FNORs: Semireduction versus Superreduction of NO.
J Am Chem Soc. 2020 Apr 8;142(14):6600-6616. doi: 10.1021/jacs.9b13795. Epub 2020 Mar 27.
3
Biological and Bioinspired Inorganic N-N Bond-Forming Reactions.
Chem Rev. 2020 Jun 24;120(12):5252-5307. doi: 10.1021/acs.chemrev.9b00629. Epub 2020 Feb 28.
4
The structure of the oxidized state of cytochrome c oxidase - experiments and theory compared.
J Inorg Biochem. 2020 May;206:111020. doi: 10.1016/j.jinorgbio.2020.111020. Epub 2020 Feb 8.
5
protein design, a retrospective.
Q Rev Biophys. 2020 Feb 11;53:e3. doi: 10.1017/S0033583519000131.
6
Proton-transfer pathways in the mitochondrial S. cerevisiae cytochrome c oxidase.
Sci Rep. 2019 Dec 27;9(1):20207. doi: 10.1038/s41598-019-56648-9.
7
Importance of the iron-sulfur component and of the siroheme modification in the resting state of sulfite reductase.
J Inorg Biochem. 2020 Feb;203:110928. doi: 10.1016/j.jinorgbio.2019.110928. Epub 2019 Nov 18.
8
Homologous bd oxidases share the same architecture but differ in mechanism.
Nat Commun. 2019 Nov 13;10(1):5138. doi: 10.1038/s41467-019-13122-4.
9
Why does sulfite reductase employ siroheme?
Chem Commun (Camb). 2019 Dec 4;55(93):14047-14049. doi: 10.1039/c9cc05271b. Epub 2019 Nov 6.
10
Not Limited to Iron: A Cobalt Heme-NO Model Facilitates N-N Coupling with External NO in the Presence of a Lewis Acid to Generate N O.
Angew Chem Int Ed Engl. 2019 Dec 16;58(51):18598-18603. doi: 10.1002/anie.201909137. Epub 2019 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验