Suppr超能文献

基于统计形状分解和条件模型的椎体和椎弓根的精确分割。

Accurate Segmentation of Vertebral Bodies and Processes Using Statistical Shape Decomposition and Conditional Models.

出版信息

IEEE Trans Med Imaging. 2015 Aug;34(8):1627-39. doi: 10.1109/TMI.2015.2396774. Epub 2015 Jan 27.

Abstract

Detailed segmentation of the vertebrae is an important pre-requisite in various applications of image-based spine assessment, surgery and biomechanical modeling. In particular, accurate segmentation of the processes is required for image-guided interventions, for example for optimal placement of bone grafts between the transverse processes. Furthermore, the geometry of the processes is now required in musculoskeletal models due to their interaction with the muscles and ligaments. In this paper, we present a new method for detailed segmentation of both the vertebral bodies and processes based on statistical shape decomposition and conditional models. The proposed technique is specifically developed with the aim to handle the complex geometry of the processes and the large variability between individuals. The key technical novelty in this work is the introduction of a part-based statistical decomposition of the vertebrae, such that the complexity of the subparts is effectively reduced, and model specificity is increased. Subsequently, in order to maintain the statistical and anatomic coherence of the ensemble, conditional models are used to model the statistical inter-relationships between the different subparts. For shape reconstruction and segmentation, a robust model fitting procedure is used to exclude improbable inter-part relationships in the estimation of the shape parameters. Segmentation results based on a dataset of 30 healthy CT scans and a dataset of 10 pathological scans show a point-to-surface error improvement of 20% and 17% respectively, and the potential of the proposed technique for detailed vertebral modeling.

摘要

详细的脊椎分割是基于图像的脊椎评估、手术和生物力学建模等各种应用的重要前提。特别是,对于图像引导的干预,例如在横突之间放置最佳的骨移植物,需要准确地分割过程。此外,由于肌肉和韧带的相互作用,过程的几何形状现在也需要在肌肉骨骼模型中。在本文中,我们提出了一种新的方法,用于基于统计形状分解和条件模型对椎体和过程进行详细分割。所提出的技术是专门开发的,目的是处理过程的复杂几何形状和个体之间的巨大变异性。这项工作的关键技术新颖之处在于引入了基于部分的脊椎统计分解,从而有效地降低了子部分的复杂性,并提高了模型的特异性。随后,为了保持整体的统计和解剖一致性,使用条件模型来模拟不同子部分之间的统计相互关系。对于形状重建和分割,使用稳健的模型拟合过程来排除形状参数估计中不可能的子部分关系。基于 30 个健康 CT 扫描数据集和 10 个病理扫描数据集的分割结果显示,点到曲面的误差分别提高了 20%和 17%,并且展示了该技术在详细的脊椎建模中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验