Suppr超能文献

用于合并现有和无对应关系的 3D 统计形状模型的框架。

A framework for the merging of pre-existing and correspondenceless 3D statistical shape models.

机构信息

Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Universitat Pompeu Fabra, Barcelona, Spain.

Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Universitat Pompeu Fabra, Barcelona, Spain.

出版信息

Med Image Anal. 2014 Oct;18(7):1044-58. doi: 10.1016/j.media.2014.05.009. Epub 2014 Jun 12.

Abstract

The construction of statistical shape models (SSMs) that are rich, i.e., that represent well the natural and complex variability of anatomical structures, is an important research topic in medical imaging. To this end, existing works have addressed the limited availability of training data by decomposing the shape variability hierarchically or by combining statistical and synthetic models built using artificially created modes of variation. In this paper, we present instead a method that merges multiple statistical models of 3D shapes into a single integrated model, thus effectively encoding extra variability that is anatomically meaningful, without the need for the original or new real datasets. The proposed framework has great flexibility due to its ability to merge multiple statistical models with unknown point correspondences. The approach is beneficial in order to re-use and complement pre-existing SSMs when the original raw data cannot be exchanged due to ethical, legal, or practical reasons. To this end, this paper describes two main stages, i.e., (1) statistical model normalization and (2) statistical model integration. The normalization algorithm uses surface-based registration to bring the input models into a common shape parameterization with point correspondence established across eigenspaces. This allows the model fusion algorithm to be applied in a coherent manner across models, with the aim to obtain a single unified statistical model of shape with improved generalization ability. The framework is validated with statistical models of the left and right cardiac ventricles, the L1 vertebra, and the caudate nucleus, constructed at distinct research centers based on different imaging modalities (CT and MRI) and point correspondences. The results demonstrate that the model integration is statistically and anatomically meaningful, with potential value for merging pre-existing multi-modality statistical models of 3D shapes.

摘要

构建丰富的统计形状模型(SSM),即能够很好地表示解剖结构的自然和复杂变异性,是医学成像中的一个重要研究课题。为此,现有工作通过分层分解形状变异性或通过结合使用人为创建的变化模式构建的统计和合成模型来解决训练数据的有限可用性问题。在本文中,我们提出了一种将多个 3D 形状的统计模型合并为单个集成模型的方法,从而有效地编码具有解剖意义的额外可变性,而无需原始或新的真实数据集。由于其能够合并具有未知点对应关系的多个统计模型,因此所提出的框架具有很大的灵活性。该方法有利于在由于道德、法律或实际原因无法交换原始原始数据时,重新使用和补充现有的 SSM。为此,本文描述了两个主要阶段,即(1)统计模型归一化和(2)统计模型集成。归一化算法使用基于曲面的配准将输入模型转换为具有跨特征空间建立的点对应关系的公共形状参数化。这允许模型融合算法在模型之间以一致的方式应用,目的是获得具有改进泛化能力的单个统一形状统计模型。该框架使用基于不同成像模式(CT 和 MRI)和点对应关系构建的左、右心室、L1 椎骨和尾状核的统计模型进行验证。结果表明,模型集成在统计学和解剖学上都是有意义的,对于合并现有的多模态 3D 形状统计模型具有潜在价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验