文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于去唾液酸糖蛋白受体靶向抗癌药物递送的乳糖胺化介孔二氧化硅纳米颗粒

Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery.

作者信息

Quan Guilan, Pan Xin, Wang Zhouhua, Wu Qiaoli, Li Ge, Dian Linghui, Chen Bao, Wu Chuanbin

机构信息

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.

Guangzhou Neworld Pharmaceutical Ltd. Co., Guangzhou, 510006, People's Republic of China.

出版信息

J Nanobiotechnology. 2015 Feb 3;13:7. doi: 10.1186/s12951-015-0068-6.


DOI:10.1186/s12951-015-0068-6
PMID:25643602
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4333889/
Abstract

BACKGROUND: Mesoporous silica nanoparticles (MSNs) have several attractive properties as a drug delivery system, such as ordered porous structure, large surface area, controllable particle size as well as interior and exterior dual-functional surfaces. The purpose of this study was to develop novel lactosaminated mesoporous silica nanoparticles (Lac-MSNs) for asialoglycoprotein receptor (ASGPR) targeted anticancer drug delivery. RESULTS: Lac-MSNs with an average diameter of approximately 100 nm were prepared by conjugation of lactose with 3-aminopropyl triethoxysilane modified MSNs. Characterization of Lac-MSNs indicated a huge Brunauer-Emmett-Teller (BET) surface area (1012 m(2)/g), highly ordered 2D hexagonal symmetry, an unique mesoporous structure with average pore size of 3.7 nm. The confocal microscopy and flow cytometric analysis illustrated Lac-MSNs were effectively endocytosed by ASGPR-positive hepatoma cell lines, HepG2 and SMMC7721. In contrast, non-selective endocytosis of Lac-MSNs was found in ASGPR-negative NIH 3T3 cells. The cellular uptake study showed the internalization process was energy-consuming and predominated by clathrin-mediated pathway. Model drug docetaxel (DTX) was loaded in the mesopores of Lac-MSNs by wetness impregnation method. In vitro cytotoxicity assay showed that DTX transported by Lac-MSNs effectively inhibited the growth of HepG2 and SMMC7721 cells in a time- and concentration- dependent manner. CONCLUSIONS: These results demonstrated that Lac-MSNs could be a promising inorganic carrier system for targeted intracellular anti-cancer drug delivery.

摘要

背景:介孔二氧化硅纳米颗粒(MSNs)作为一种药物递送系统具有多种吸引人的特性,如有序的多孔结构、大表面积、可控的粒径以及内外双功能表面。本研究的目的是开发新型乳糖胺化介孔二氧化硅纳米颗粒(Lac-MSNs)用于去唾液酸糖蛋白受体(ASGPR)靶向抗癌药物递送。 结果:通过将乳糖与3-氨丙基三乙氧基硅烷修饰的MSNs偶联制备了平均直径约为100 nm的Lac-MSNs。Lac-MSNs的表征显示出巨大的布鲁诺尔-埃米特-泰勒(BET)表面积(1012 m²/g)、高度有序的二维六方对称性、平均孔径为3.7 nm的独特介孔结构。共聚焦显微镜和流式细胞术分析表明,Lac-MSNs被ASGPR阳性肝癌细胞系HepG2和SMMC7721有效内吞。相比之下,在ASGPR阴性的NIH 3T3细胞中发现Lac-MSNs的非选择性内吞。细胞摄取研究表明内化过程是耗能的,且以网格蛋白介导的途径为主。通过湿浸渍法将模型药物多西他赛(DTX)负载到Lac-MSNs的介孔中。体外细胞毒性试验表明,Lac-MSNs转运的DTX以时间和浓度依赖性方式有效抑制HepG2和SMMC7721细胞的生长。 结论:这些结果表明,Lac-MSNs可能是一种有前途的无机载体系统,用于靶向细胞内抗癌药物递送。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/5aa3b875cc8d/12951_2015_68_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/582cc4d3866e/12951_2015_68_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/1490bc282d1e/12951_2015_68_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/0ee2e02c403f/12951_2015_68_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/92c556f92324/12951_2015_68_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/7b998b84985a/12951_2015_68_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/4c8be0b953f7/12951_2015_68_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/ceba2956f6a0/12951_2015_68_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/75a02a66a99c/12951_2015_68_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/8f6a286a8100/12951_2015_68_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/564cd1d30b30/12951_2015_68_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/5aa3b875cc8d/12951_2015_68_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/582cc4d3866e/12951_2015_68_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/1490bc282d1e/12951_2015_68_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/0ee2e02c403f/12951_2015_68_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/92c556f92324/12951_2015_68_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/7b998b84985a/12951_2015_68_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/4c8be0b953f7/12951_2015_68_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/ceba2956f6a0/12951_2015_68_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/75a02a66a99c/12951_2015_68_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/8f6a286a8100/12951_2015_68_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/564cd1d30b30/12951_2015_68_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/4333889/5aa3b875cc8d/12951_2015_68_Fig11_HTML.jpg

相似文献

[1]
Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery.

J Nanobiotechnology. 2015-2-3

[2]
Effect of size on the cellular endocytosis and controlled release of mesoporous silica nanoparticles for intracellular delivery.

Biomed Microdevices. 2012-4

[3]
Cancer-targeted and intracellular delivery of Bcl-2-converting peptide with functional macroporous silica nanoparticles for biosafe treatment.

Mater Sci Eng C Mater Biol Appl. 2019-11-5

[4]
Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy.

J Colloid Interface Sci. 2016-2-1

[5]
Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles.

Nanoscale. 2012-4-30

[6]
Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles.

Nanotechnology. 2011-10-21

[7]
Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo.

J Control Release. 2014-7-15

[8]
Redox-responsive nanocarrier based on heparin end-capped mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo.

Langmuir. 2014-7-8

[9]
Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy.

Drug Deliv. 2018-11

[10]
PEG-templated mesoporous silica nanoparticles exclusively target cancer cells.

Nanoscale. 2011-7-4

引用本文的文献

[1]
Development of Modified Drug Delivery Systems with Metformin Loaded in Mesoporous Silica Matrices: Experimental and Theoretical Designs.

Pharmaceutics. 2025-7-4

[2]
Controlling the Hierarchical Morphology of ZIF-67 via Hydrothermal Synthesis: Insights into the Stability for Gas Separation.

Langmuir. 2025-7-29

[3]
Enhanced delivery of anti-inflammatory therapeutics using pH-responsive histidine-modified poly-L-lysine on mesoporous silica nanoparticles.

Narra J. 2025-4

[4]
Modulating metal-organic frameworks by surface engineering of stearic acid modification for follicular drug delivery and enhanced hair growth promotion.

J Nanobiotechnology. 2025-2-18

[5]
Glycan-Silica Nanoparticles as Effective Inhibitors for Blocking Virus Infection.

ACS Appl Mater Interfaces. 2025-2-19

[6]
Delivery of Avocado Seed Extract Using Novel Charge-Switchable Mesoporous Silica Nanoparticles with Galactose Surface Modified to Target Sorafenib-Resistant Hepatocellular Carcinoma.

Int J Nanomedicine. 2024

[7]
Investigating layer-by-layer chitosan-dextran sulfate-coated mesoporous silica as a pH-sensitive drug delivery system.

J Mater Sci Mater Med. 2024-6-17

[8]
Structural elucidation and development of azelaic acid loaded mesoporous silica nanoparticles infused gel: Revolutionizing nanodrug delivery for cosmetics and pharmaceuticals.

Heliyon. 2024-4-13

[9]
Magnetic Mesoporous Silica for Targeted Drug Delivery of Chloroquine: Synthesis, Characterization, and In Vitro Evaluation.

Pharmaceutics. 2024-3-3

[10]
Cardamonin-loaded liposomal formulation for improving percutaneous penetration and follicular delivery for androgenetic alopecia.

Drug Deliv Transl Res. 2024-9

本文引用的文献

[1]
Functionalized mesoporous silica nanoparticles with mucoadhesive and sustained drug release properties for potential bladder cancer therapy.

Langmuir. 2014-6-3

[2]
Thermoresponsive layer-by-layer assemblies for nanoparticle-based drug delivery.

Langmuir. 2014-5-27

[3]
Luminescent mesoporous nanoreservoirs for the effective loading and intracellular delivery of therapeutic drugs.

Acta Biomater. 2014-3

[4]
Particle-size-dependent toxicity and immunogenic activity of mesoporous silica-based adjuvants for tumor immunotherapy.

Acta Biomater. 2013-3-26

[5]
Mesoporous silica nanoparticles in medicine--recent advances.

Adv Drug Deliv Rev. 2012-8-18

[6]
Ligand conformation dictates membrane and endosomal trafficking of arginine-glycine-aspartate (RGD)-functionalized mesoporous silica nanoparticles.

Chemistry. 2012-5-15

[7]
Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles.

Nanoscale. 2012-4-30

[8]
Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots.

Biomaterials. 2012-2-4

[9]
Novel water-soluble polyurethane nanomicelles for cancer chemotherapy: physicochemical characterization and cellular activities.

J Nanobiotechnology. 2012-1-5

[10]
Investigation of folate-conjugated fluorescent silica nanoparticles for targeting delivery to folate receptor-positive tumors and their internalization mechanism.

Int J Nanomedicine. 2011-9-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索