Suppr超能文献

加利福尼亚晚期卵巢癌死亡率的空间分析。

Spatial analysis of advanced-stage ovarian cancer mortality in California.

作者信息

Bristow Robert E, Chang Jenny, Ziogas Argyrios, Gillen Daniel L, Bai Lu, Vieira Veronica M

机构信息

Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of California, Irvine, Medical Center, Orange, CA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Medical Center, Orange, CA.

Department of Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA.

出版信息

Am J Obstet Gynecol. 2015 Jul;213(1):43.e1-43.e8. doi: 10.1016/j.ajog.2015.01.045. Epub 2015 Jan 31.

Abstract

OBJECTIVE

We sought to determine the impact of geographic location on advanced-stage ovarian cancer mortality in relation to adherence to National Comprehensive Cancer Network (NCCN) treatment guidelines and hospital case volume.

STUDY DESIGN

This was a retrospective observational cohort study of patients diagnosed with stage IIIC/IV epithelial ovarian cancer (Jan. 1, 1996, through Dec. 31, 2006) identified from the California Cancer Registry. Generalized additive models were created to assess the effect of spatial distributions of geographic location, demographic characteristics, disease-related variables, adherence to NCCN guidelines, and hospital case volume, with simultaneous smoothing of geographic location and adjustment for confounding variables.

RESULTS

A total of 11,765 patients were identified. Twelve of the 378 hospitals (3.2%) were high-volume hospitals (HVH) (≥20 cases/y) and cared for 2112 patients (17.9%). For all patients, the median distance to an HVH was 22.7 km/14.1 miles and 80% were located within 79.6 km/49.5 miles of an HVH. Overall, 45.4% of patients were treated according to NCCN guidelines. The global test for location revealed that geographic position within the state was significantly correlated with ovarian cancer mortality after adjusting for other variables (P < .001). Distance to receive care ≥32 km/20 miles was protective against mortality (hazard ratio [HR], 0.86; 95% confidence interval [CI], 0.79-0.93), while distance from an HVH ≥80 km/50 miles was associated with an increased risk of death (HR, 1.13; 95% CI, 1.03-1.23). The effects of geographic predictors were attenuated when nonadherence to NCCN guidelines (HR, 1.25; 95% CI, 1.18-1.32) and care at an HVH (HR, 0.87; 95% CI, 0.81-0.93) were introduced into the model.

CONCLUSION

Geographic location is a significant predictor of advanced-stage ovarian cancer mortality and the effect is primarily related to the likelihood of receiving NCCN guideline adherent care and treatment at an HVH.

摘要

目的

我们试图确定地理位置对晚期卵巢癌死亡率的影响,这与遵循美国国立综合癌症网络(NCCN)治疗指南及医院病例数量有关。

研究设计

这是一项回顾性观察队列研究,研究对象为1996年1月1日至2006年12月31日期间从加利福尼亚癌症登记处确诊为IIIC/IV期上皮性卵巢癌的患者。创建广义相加模型以评估地理位置、人口统计学特征、疾病相关变量、遵循NCCN指南情况及医院病例数量的空间分布的影响,同时对地理位置进行平滑处理并对混杂变量进行校正。

结果

共识别出11765例患者。378家医院中有12家(3.2%)为高病例量医院(HVH)(每年≥20例),收治了2112例患者(17.9%)。对于所有患者,到HVH的中位距离为22.7千米/14.1英里,80%的患者位于距离HVH 79.6千米/49.5英里范围内。总体而言,45.4%的患者按照NCCN指南接受治疗。位置的全局检验显示,在调整其他变量后,该州内的地理位置与卵巢癌死亡率显著相关(P < 0.001)。接受治疗的距离≥32千米/20英里可降低死亡风险(风险比[HR],0.86;95%置信区间[CI],0.79 - 0.93),而距离HVH≥80千米/50英里则与死亡风险增加相关(HR,1.13;95% CI,1.03 - 1.23)。当将不遵循NCCN指南(HR,1.25;95% CI,1.18 - 1.32)和在HVH接受治疗(HR,0.87;95% CI,0.81 - 0.93)引入模型时,地理预测因素的影响减弱。

结论

地理位置是晚期卵巢癌死亡率的重要预测因素,其影响主要与在HVH接受遵循NCCN指南的护理和治疗的可能性有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f4/4485540/f8b94167033f/nihms698326f1.jpg

相似文献

1
Spatial analysis of advanced-stage ovarian cancer mortality in California.加利福尼亚晚期卵巢癌死亡率的空间分析。
Am J Obstet Gynecol. 2015 Jul;213(1):43.e1-43.e8. doi: 10.1016/j.ajog.2015.01.045. Epub 2015 Jan 31.

引用本文的文献

9
Ambient air pollution and ovarian cancer survival in California.大气污染与加利福尼亚州卵巢癌患者的生存
Gynecol Oncol. 2021 Oct;163(1):155-161. doi: 10.1016/j.ygyno.2021.07.036. Epub 2021 Jul 28.

本文引用的文献

3
Cancer statistics, 2014.癌症统计数据,2014 年。
CA Cancer J Clin. 2014 Jan-Feb;64(1):9-29. doi: 10.3322/caac.21208. Epub 2014 Jan 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验