Rivera-Urbina Guadalupe Nathzidy, Batsikadze Giorgi, Molero-Chamizo Andrés, Paulus Walter, Kuo Min-Fang, Nitsche Michael A
Department of Clinical Neurophysiology, Georg-August-University Göttingen, Göttingen, Germany; University Pablo de Olavide, Ctra. de Utrera, km. 1, Sevilla, 41013, Spain.
Eur J Neurosci. 2015 Mar;41(6):845-55. doi: 10.1111/ejn.12840. Epub 2015 Feb 3.
The posterior parietal cortex is part of the cortical network involved in motor learning and is structurally and functionally connected with the primary motor cortex (M1). Neuroplastic alterations of neuronal connectivity might be an important basis for learning processes. These have however not been explored for parieto-motor connections in humans by transcranial direct current stimulation (tDCS). Exploring tDCS effects on parieto-motor cortical connectivity might be functionally relevant, because tDCS has been shown to improve motor learning. We aimed to explore plastic alterations of parieto-motor cortical connections by tDCS in healthy humans. We measured neuroplastic changes of corticospinal excitability via motor evoked potentials (MEP) elicited by single-pulse transcranial magnetic stimulation (TMS) before and after tDCS over the left posterior parietal cortex (P3), and 3 cm posterior or lateral to P3, to explore the spatial specificity of the effects. Furthermore, short-interval intracortical inhibition/intracortical facilitation (SICI/ICF) over M1, and parieto-motor cortical connectivity were obtained before and after P3 tDCS. The results show polarity-dependent M1 excitability alterations primarily after P3 tDCS. Single-pulse TMS-elicited MEPs, M1 SICI/ICF at 5 and 7 ms and 10 and 15 ms interstimulus intervals (ISIs), and parieto-motor connectivity at 10 and 15 ms ISIs were all enhanced by anodal stimulation. Single pulse-TMS-elicited MEPs, and parieto-motor connectivity at 10 and 15 ms ISIs were reduced by cathodal tDCS. The respective corticospinal excitability alterations lasted for at least 120 min after stimulation. These results show an effect of remote stimulation of parietal areas on M1 excitability. The spatial specificity of the effects and the impact on parietal cortex-motor cortex connections suggest a relevant connectivity-driven effect.
顶叶后皮质是参与运动学习的皮质网络的一部分,在结构和功能上与初级运动皮质(M1)相连。神经元连接的神经可塑性改变可能是学习过程的重要基础。然而,经颅直流电刺激(tDCS)尚未对人类顶叶 - 运动连接进行过此类探索。探索tDCS对顶叶 - 运动皮质连接的影响可能具有功能相关性,因为tDCS已被证明可改善运动学习。我们旨在探索tDCS对健康人类顶叶 - 运动皮质连接的可塑性改变。我们在对左侧顶叶后皮质(P3)以及P3后方或外侧3厘米处进行tDCS前后,通过单脉冲经颅磁刺激(TMS)诱发的运动诱发电位(MEP)测量皮质脊髓兴奋性的神经可塑性变化,以探索效应的空间特异性。此外,在P3 tDCS前后,获取了M1上的短间隔皮质内抑制/皮质内易化(SICI/ICF)以及顶叶 - 运动皮质连接。结果显示,主要在P3 tDCS后出现极性依赖性的M1兴奋性改变。阳极刺激增强了单脉冲TMS诱发的MEP、5和7毫秒以及10和15毫秒刺激间隔(ISI)时的M1 SICI/ICF,以及10和15毫秒ISI时的顶叶 - 运动连接。阴极tDCS降低了单脉冲TMS诱发的MEP以及10和15毫秒ISI时顶叶 - 运动连接。刺激后,相应的皮质脊髓兴奋性改变持续至少120分钟。这些结果表明顶叶区域的远程刺激对M1兴奋性有影响。效应的空间特异性以及对顶叶皮质 - 运动皮质连接的影响表明存在相关的连接驱动效应。