Suppr超能文献

直流电刺激对人类运动皮层兴奋性的部分非线性刺激强度依赖性影响。

Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.

机构信息

Department of Clinical Neurophysiology, University of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany.

出版信息

J Physiol. 2013 Apr 1;591(7):1987-2000. doi: 10.1113/jphysiol.2012.249730. Epub 2013 Jan 21.

Abstract

Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI and ICF towards inhibition. No significant changes were observed in the other protocols. Sham tDCS did not induce significant MEP alterations. These results suggest that an enhancement of tDCS intensity does not necessarily increase efficacy of stimulation, but might also shift the direction of excitability alterations. This should be taken into account for applications of the stimulation technique using different intensities and durations in order to achieve stronger or longer lasting after-effects.

摘要

经颅直流电刺激(tDCS)在 1 mA 强度下以 35 cm(2)的电极大小刺激人类运动皮层,已被证明在刺激期间和之后会引起皮层兴奋性的转移。这些转移具有极性特异性,阴极 tDCS 导致皮层兴奋性降低,阳极刺激导致皮层兴奋性增加。在临床和认知研究中,经常使用更强的刺激强度,但它们对皮层兴奋性的生理影响尚未得到探索。因此,在这里,我们旨在探索 2 mA tDCS 对皮层兴奋性的影响。我们在 14 名健康受试者的左侧初级运动皮层上施加 20 分钟的 2 mA 阳极或阴极 tDCS。9 名和 8 名健康受试者分别接受 1 mA 阴极 tDCS 和假 tDCS 作为对照疗程 20 分钟。运动皮层兴奋性通过右第一背间骨间肌的经颅磁刺激(TMS)诱发运动诱发电位(MEP)进行监测。通过单个 TMS 脉冲诱发的 MEP 幅度和运动阈值来探索皮质脊髓兴奋性。通过皮质静息期(CSP)、短潜伏期皮质内抑制(SICI)和易化(ICF)以及 I 波易化获得刺激的皮质内效应。这些方案以随机顺序在 tDCS 之前和之后立即记录。此外,在刺激结束后 2 小时内、当天晚上、次日早上、次日中午和次日晚上每隔 30 分钟记录单次 TMS MEP、运动阈值、SICI 和 ICF。2 mA 的阳极和阴极 tDCS 均导致 MEP 幅度显著增加,而 1 mA 阴极 tDCS 降低了皮质脊髓兴奋性。在 2 mA 阴极和阳极 tDCS 后均观察到 SICI 和 ICF 向兴奋性增强的显著转移。在 1 mA 时,阴极 tDCS 降低了单脉冲 TMS 诱发的 MEP 幅度,并使 SICI 和 ICF 向抑制转移。在其他方案中未观察到显著变化。假 tDCS 未引起 MEP 明显改变。这些结果表明,增加 tDCS 强度不一定会增加刺激的效果,反而可能改变兴奋性改变的方向。在使用不同强度和持续时间的刺激技术应用中应考虑到这一点,以达到更强或更持久的后效。

相似文献

1
Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.
J Physiol. 2013 Apr 1;591(7):1987-2000. doi: 10.1113/jphysiol.2012.249730. Epub 2013 Jan 21.
2
Parietal transcranial direct current stimulation modulates primary motor cortex excitability.
Eur J Neurosci. 2015 Mar;41(6):845-55. doi: 10.1111/ejn.12840. Epub 2015 Feb 3.
4
Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans.
Neuroscience. 2010 Apr 14;166(4):1219-25. doi: 10.1016/j.neuroscience.2010.01.019. Epub 2010 Jan 18.
5
Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability.
Exp Brain Res. 2004 Jun;156(4):439-43. doi: 10.1007/s00221-003-1800-2. Epub 2004 Jan 24.
7
Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex.
Am J Physiol Gastrointest Liver Physiol. 2009 Dec;297(6):G1035-40. doi: 10.1152/ajpgi.00294.2009. Epub 2009 Oct 8.
9
Current intensity- and polarity-specific online and aftereffects of transcranial direct current stimulation: An fMRI study.
Hum Brain Mapp. 2020 Apr 15;41(6):1644-1666. doi: 10.1002/hbm.24901. Epub 2019 Dec 20.

引用本文的文献

1
Ultrasound system for precise neuromodulation of human deep brain circuits.
Nat Commun. 2025 Sep 5;16(1):8024. doi: 10.1038/s41467-025-63020-1.
2
Meta-analysis of the acute effects of anodal transcranial direct current stimulation on athletic performance.
Front Physiol. 2025 Aug 12;16:1631905. doi: 10.3389/fphys.2025.1631905. eCollection 2025.
5
Dose-response of tDCS effects on motor learning and cortical excitability: A preregistered study.
Imaging Neurosci (Camb). 2025 Jan 15;3. doi: 10.1162/imag_a_00431. eCollection 2025.
6
Cerebellar non-invasive stimulation of social and emotional mentalizing: A meta-analysis.
Imaging Neurosci (Camb). 2024 Oct 28;2. doi: 10.1162/imag_a_00334. eCollection 2024.
7
Does tDCS Enhance Complex Motor Skill Acquisition? Evidence from a Golf-Putting Task.
Sensors (Basel). 2025 Jul 10;25(14):4297. doi: 10.3390/s25144297.
8
"Rationality" enhancement through anodal tDCS over the right ventrolateral prefrontal cortex.
Sci Rep. 2025 Jul 27;15(1):27361. doi: 10.1038/s41598-025-12375-y.
10
Resolving inconsistent effects of tDCS on learning using a homeostatic structural plasticity model.
Front Netw Physiol. 2025 Jul 7;5:1565802. doi: 10.3389/fnetp.2025.1565802. eCollection 2025.

本文引用的文献

1
Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation.
Brain Stimul. 2013 May;6(3):424-32. doi: 10.1016/j.brs.2012.04.011. Epub 2012 Jun 2.
5
Noninvasive associative plasticity induction in a corticocortical pathway of the human brain.
J Neurosci. 2011 Nov 30;31(48):17669-79. doi: 10.1523/JNEUROSCI.1513-11.2011.
6
Transcranial direct current stimulation--update 2011.
Restor Neurol Neurosci. 2011;29(6):463-92. doi: 10.3233/RNN-2011-0618.
7
Polarity-dependent transcranial direct current stimulation effects on central auditory processing.
PLoS One. 2011;6(9):e25399. doi: 10.1371/journal.pone.0025399. Epub 2011 Sep 23.
8
Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation.
Hum Brain Mapp. 2012 Oct;33(10):2499-508. doi: 10.1002/hbm.21380. Epub 2011 Sep 16.
9
Transcranial direct current stimulation effects on I-wave activity in humans.
J Neurophysiol. 2011 Jun;105(6):2802-10. doi: 10.1152/jn.00617.2010. Epub 2011 Mar 23.
10
Mood and cognitive effects of transcranial direct current stimulation in post-stroke depression.
Neurocase. 2011 Aug;17(4):318-22. doi: 10.1080/13554794.2010.509319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验