§Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States.
ACS Nano. 2015 Mar 24;9(3):3032-43. doi: 10.1021/nn507243w. Epub 2015 Feb 18.
Engineered carbonaceous nanomaterials (ECNs), including single-wall carbon nanotubes (SWCNTs), multiwall carbon nanotubes (MWCNTs), graphene, and graphene oxide (GO), are potentially hazardous to the lung. With incremental experience in the use of predictive toxicological approaches, seeking to relate ECN physicochemical properties to adverse outcome pathways (AOPs), it is logical to explore the existence of a common AOP that allows comparative analysis of broad ECN categories. We established an ECN library comprising three different types of SWCNTs, graphene, and graphene oxide (two sizes) for comparative analysis according to a cell-based AOP that also plays a role in the pathogenesis of pulmonary fibrosis. SWCNTs synthesized by Hipco, arc discharge and Co-Mo catalyst (CoMoCAT) methods were obtained in their as-prepared (AP) state, following which they were further purified (PD) or coated with Pluronic F108 (PF108) or bovine serum albumin (BSA) to improve dispersal and colloidal stability. GO was prepared as two sizes, GO-small (S) and GO-large (L), while the graphene samples were coated with BSA and PF108 to enable dispersion in aqueous solution. In vitro screening showed that AP- and PD-SWCNTs, irrespective of the method of synthesis, as well as graphene (BSA) and GO (S and L) could trigger interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) production in myeloid (THP-1) and epithelial (BEAS-2B) cell lines, respectively. Oropharyngeal aspiration in mice confirmed that AP-Hipco tubes, graphene (BSA-dispersed), GO-S and GO-L could induce IL-1β and TGF-β1 production in the lung in parallel with lung fibrosis. Notably, GO-L was the most pro-fibrogenic material based on rapid kinetics of pulmonary injury. In contrast, PF108-dispersed SWCNTs and -graphene failed to exert fibrogenic effects. Collectively, these data indicate that the dispersal state and surface reactivity of ECNs play key roles in triggering a pro-fibrogenic AOP, which could prove helpful for hazard ranking and a proposed tiered testing approach for large ECN categories.
工程碳纳米材料(ECNs),包括单壁碳纳米管(SWCNTs)、多壁碳纳米管(MWCNTs)、石墨烯和氧化石墨烯(GO),对肺部具有潜在危害。随着预测毒理学方法应用经验的不断增加,人们试图将 ECN 的物理化学性质与不良结局途径(AOPs)联系起来,因此探索存在一个共同的 AOP 以允许对广泛的 ECN 类别进行比较分析是合乎逻辑的。我们建立了一个 ECN 文库,其中包含三种不同类型的 SWCNTs、石墨烯和氧化石墨烯(两种大小),以便根据细胞 AOP 进行比较分析,该 AOP 也在肺纤维化的发病机制中发挥作用。采用 Hipco、电弧放电和 Co-Mo 催化剂(CoMoCAT)方法合成的 SWCNTs 以其制备状态(AP)获得,然后进一步纯化(PD)或用 Pluronic F108(PF108)或牛血清白蛋白(BSA)进行涂层以改善分散性和胶体稳定性。GO 制备为两种大小,GO-小(S)和 GO-大(L),而石墨烯样品用 BSA 和 PF108 进行涂层以使其在水溶液中分散。体外筛选表明,AP 和 PD-SWCNTs,无论合成方法如何,以及石墨烯(BSA)和 GO(S 和 L)均可分别在髓样(THP-1)和上皮(BEAS-2B)细胞系中触发白细胞介素-1β(IL-1β)和转化生长因子-β1(TGF-β1)的产生。小鼠经口吸入证实,AP-Hipco 管、石墨烯(BSA 分散)、GO-S 和 GO-L 可在肺纤维化的同时诱导肺中 IL-1β和 TGF-β1 的产生。值得注意的是,GO-L 是基于肺损伤的快速动力学最具纤维形成性的材料。相比之下,PF108 分散的 SWCNTs 和石墨烯未发挥纤维形成作用。总的来说,这些数据表明 ECNs 的分散状态和表面反应性在触发促纤维形成 AOP 中起着关键作用,这可能有助于危害分级和对大 ECN 类别的分层测试方法提出建议。