Suppr超能文献

关于评估雾化纳米材料肺纤维化潜能的体外方法的专家共识

Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials.

作者信息

Clippinger Amy J, Ahluwalia Arti, Allen David, Bonner James C, Casey Warren, Castranova Vincent, David Raymond M, Halappanavar Sabina, Hotchkiss Jon A, Jarabek Annie M, Maier Monika, Polk William, Rothen-Rutishauser Barbara, Sayes Christie M, Sayre Phil, Sharma Monita, Stone Vicki

机构信息

PETA International Science Consortium Ltd., London, UK.

University of Pisa, Pisa, Italy.

出版信息

Arch Toxicol. 2016 Jul;90(7):1769-83. doi: 10.1007/s00204-016-1717-8. Epub 2016 Apr 27.

Abstract

The increasing use of multi-walled carbon nanotubes (MWCNTs) in consumer products and their potential to induce adverse lung effects following inhalation has lead to much interest in better understanding the hazard associated with these nanomaterials (NMs). While the current regulatory requirement for substances of concern, such as MWCNTs, in many jurisdictions is a 90-day rodent inhalation test, the monetary, ethical, and scientific concerns associated with this test led an international expert group to convene in Washington, DC, USA, to discuss alternative approaches to evaluate the inhalation toxicity of MWCNTs. Pulmonary fibrosis was identified as a key adverse outcome linked to MWCNT exposure, and recommendations were made on the design of an in vitro assay that is predictive of the fibrotic potential of MWCNTs. While fibrosis takes weeks or months to develop in vivo, an in vitro test system may more rapidly predict fibrogenic potential by monitoring pro-fibrotic mediators (e.g., cytokines and growth factors). Therefore, the workshop discussions focused on the necessary specifications related to the development and evaluation of such an in vitro system. Recommendations were made for designing a system using lung-relevant cells co-cultured at the air-liquid interface to assess the pro-fibrogenic potential of aerosolized MWCNTs, while considering human-relevant dosimetry and NM life cycle transformations. The workshop discussions provided the fundamental design components of an air-liquid interface in vitro test system that will be subsequently expanded to the development of an alternative testing strategy to predict pulmonary toxicity and to generate data that will enable effective risk assessment of NMs.

摘要

多壁碳纳米管(MWCNTs)在消费品中的使用日益增加,且吸入后有引发肺部不良反应的可能性,这引发了人们对更好地了解这些纳米材料(NMs)相关危害的浓厚兴趣。尽管目前在许多司法管辖区,对于诸如MWCNTs等关注物质的监管要求是进行为期90天的啮齿动物吸入试验,但与该试验相关的金钱、伦理和科学问题促使一个国际专家组在美国华盛顿特区召开会议,讨论评估MWCNTs吸入毒性的替代方法。肺纤维化被确定为与MWCNT暴露相关的关键不良后果,会议就设计一种能够预测MWCNTs纤维化潜力的体外试验提出了建议。虽然纤维化在体内需要数周或数月才能发展,但体外测试系统可以通过监测促纤维化介质(如细胞因子和生长因子)更快地预测纤维化潜力。因此,研讨会讨论聚焦于与这种体外系统的开发和评估相关的必要规范。会议就设计一个使用在气液界面共培养的肺相关细胞的系统以评估雾化MWCNTs的促纤维化潜力提出了建议,同时考虑与人类相关的剂量测定和纳米材料的生命周期转变。研讨会讨论提供了气液界面体外测试系统的基本设计要素,该系统随后将扩展为一种替代测试策略的开发,以预测肺部毒性并生成能够有效评估纳米材料风险的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d38/4894935/b85fa62d8b1f/204_2016_1717_Fig1_HTML.jpg

相似文献

1
Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials.
Arch Toxicol. 2016 Jul;90(7):1769-83. doi: 10.1007/s00204-016-1717-8. Epub 2016 Apr 27.
2
Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs).
Arch Toxicol. 2016 Jul;90(7):1605-22. doi: 10.1007/s00204-016-1742-7. Epub 2016 May 23.
5
A novel human 3D lung microtissue model for nanoparticle-induced cell-matrix alterations.
Part Fibre Toxicol. 2019 Apr 3;16(1):15. doi: 10.1186/s12989-019-0298-0.
8
28-Day inhalation toxicity study with evaluation of lung deposition and retention of tangled multi-walled carbon nanotubes.
Nanotoxicology. 2020 Mar;14(2):250-262. doi: 10.1080/17435390.2019.1700568. Epub 2019 Dec 19.

引用本文的文献

1
Use of quantitative to extrapolation (QIVIVE) for the assessment of non-combustible next-generation product aerosols.
Front Toxicol. 2024 Apr 11;6:1373325. doi: 10.3389/ftox.2024.1373325. eCollection 2024.
2
Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery.
Adv Sci (Weinh). 2024 Apr;11(14):e2308659. doi: 10.1002/advs.202308659. Epub 2024 Jan 28.
3
Lung Organoids in Smoking Research: Current Advances and Future Promises.
Biomolecules. 2022 Oct 12;12(10):1463. doi: 10.3390/biom12101463.
4
Dynamic Fluid Flow Exacerbates the (Pro-)Inflammatory Effects of Aerosolised Engineered Nanomaterials In Vitro.
Nanomaterials (Basel). 2022 Sep 30;12(19):3431. doi: 10.3390/nano12193431.
5
3D Printer Particle Emissions: Translation to Internal Dose in Adults and Children.
J Aerosol Sci. 2021 May 1;154:1-12. doi: 10.1016/j.jaerosci.2021.105765.
6
IVIVE: Facilitating the Use of Toxicity Data in Risk Assessment and Decision Making.
Toxics. 2022 May 1;10(5):232. doi: 10.3390/toxics10050232.
7
Experimental and Computational Nanotoxicology-Complementary Approaches for Nanomaterial Hazard Assessment.
Nanomaterials (Basel). 2022 Apr 14;12(8):1346. doi: 10.3390/nano12081346.
10
The effects of gene × environment interactions on silver nanoparticle toxicity in the respiratory system: An adverse outcome pathway.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Sep;13(5):e1708. doi: 10.1002/wnan.1708. Epub 2021 Mar 25.

本文引用的文献

1
One time nose-only inhalation of MWCNTs: Exploring the mechanism of toxicity by intermittent sacrifice in Wistar rats.
Toxicol Rep. 2015 Feb 7;2:111-120. doi: 10.1016/j.toxrep.2015.02.003. eCollection 2015.
3
Identification of TGF-β receptor-1 as a key regulator of carbon nanotube-induced fibrogenesis.
Am J Physiol Lung Cell Mol Physiol. 2015 Oct 15;309(8):L821-33. doi: 10.1152/ajplung.00002.2015. Epub 2015 Aug 21.
4
Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory.
Beilstein J Nanotechnol. 2015 Aug 21;6:1769-80. doi: 10.3762/bjnano.6.181. eCollection 2015.
5
Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making.
ACS Nano. 2015;9(4):3409-17. doi: 10.1021/acsnano.5b00941. Epub 2015 Mar 20.
7
Engineering an in vitro air-blood barrier by 3D bioprinting.
Sci Rep. 2015 Jan 22;5:7974. doi: 10.1038/srep07974.
9
Computational modeling of nanoscale and microscale particle deposition, retention and dosimetry in the mouse respiratory tract.
Inhal Toxicol. 2014 Dec;26(14):829-42. doi: 10.3109/08958378.2014.935535. Epub 2014 Nov 6.
10
Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches.
Beilstein J Nanotechnol. 2014 Aug 26;5:1357-70. doi: 10.3762/bjnano.5.149. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验