School of Engineering, Brown University, Providence, RI 02912, USA.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12295-300. doi: 10.1073/pnas.1222276110. Epub 2013 Jul 9.
Understanding and controlling the interaction of graphene-based materials with cell membranes is key to the development of graphene-enabled biomedical technologies and to the management of graphene health and safety issues. Very little is known about the fundamental behavior of cell membranes exposed to ultrathin 2D synthetic materials. Here we investigate the interactions of graphene and few-layer graphene (FLG) microsheets with three cell types and with model lipid bilayers by combining coarse-grained molecular dynamics (MD), all-atom MD, analytical modeling, confocal fluorescence imaging, and electron microscopic imaging. The imaging experiments show edge-first uptake and complete internalization for a range of FLG samples of 0.5- to 10-μm lateral dimension. In contrast, the simulations show large energy barriers relative to kBT for membrane penetration by model graphene or FLG microsheets of similar size. More detailed simulations resolve this paradox by showing that entry is initiated at corners or asperities that are abundant along the irregular edges of fabricated graphene materials. Local piercing by these sharp protrusions initiates membrane propagation along the extended graphene edge and thus avoids the high energy barrier calculated in simple idealized MD simulations. We propose that this mechanism allows cellular uptake of even large multilayer sheets of micrometer-scale lateral dimension, which is consistent with our multimodal bioimaging results for primary human keratinocytes, human lung epithelial cells, and murine macrophages.
理解和控制基于石墨烯的材料与细胞膜的相互作用是开发基于石墨烯的生物医学技术和管理石墨烯健康与安全问题的关键。对于暴露于超薄 2D 合成材料的细胞膜的基本行为,人们知之甚少。在这里,我们通过结合粗粒度分子动力学(MD)、全原子 MD、分析建模、共聚焦荧光成像和电子显微镜成像,研究了石墨烯和少层石墨烯(FLG)微片与三种细胞类型以及模型脂质双层的相互作用。成像实验表明,对于横向尺寸为 0.5-10μm 的一系列 FLG 样品,存在边缘优先摄取和完全内化。相比之下,模拟显示对于类似大小的模型石墨烯或 FLG 微片,相对于 kBT,穿透细胞膜的能量势垒很大。更详细的模拟通过显示在制造的石墨烯材料的不规则边缘上大量存在的角或突起处开始进入,解决了这一悖论。这些尖锐的突起物局部刺穿会启动膜沿着扩展的石墨烯边缘传播,从而避免了在简单理想化 MD 模拟中计算出的高能量势垒。我们提出,这种机制允许即使是具有微米级横向尺寸的多层大薄片也能被细胞摄取,这与我们对原代人角质形成细胞、人肺上皮细胞和鼠巨噬细胞的多模式生物成像结果是一致的。