Suppr超能文献

母系遗传的内共生体能否适应新宿主?螺旋体感染的直接代价而非垂直传播效率,在水平转移到黑腹果蝇后迅速演变。

Can maternally inherited endosymbionts adapt to a novel host? Direct costs of Spiroplasma infection, but not vertical transmission efficiency, evolve rapidly after horizontal transfer into D. melanogaster.

作者信息

Nakayama S, Parratt S R, Hutchence K J, Lewis Z, Price T A R, Hurst G D D

机构信息

Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.

出版信息

Heredity (Edinb). 2015 Jun;114(6):539-43. doi: 10.1038/hdy.2014.112. Epub 2015 Feb 4.

Abstract

Maternally inherited symbionts are common in arthropods and many have important roles in host adaptation. The observation that specific symbiont lineages infect distantly related host species implies new interactions are commonly established by lateral transfer events. However, studies have shown that symbionts often perform poorly in novel hosts. We hypothesized selection on the symbiont may be sufficiently rapid that poor performance in a novel host environment is rapidly ameliorated, permitting symbiont maintenance. Here, we test this prediction for a Spiroplasma strain transinfected into the novel host Drosophila melanogaster. In the generations immediately following transinfection, the symbiont had low transmission efficiency to offspring and imposed severe fitness costs on its host. We observed that effects on host fitness evolved rapidly, being undetectable after 17 generations in the novel host, whereas vertical transmission efficiency was poorly responsive over this period. Our results suggest that long-term symbiosis may more readily be established in cases where symbionts perform poorly in just one aspect of symbiosis.

摘要

母系遗传的共生菌在节肢动物中很常见,许多共生菌在宿主适应过程中发挥着重要作用。特定共生菌谱系感染远缘宿主物种这一现象表明,新的相互作用通常是通过横向转移事件建立的。然而,研究表明,共生菌在新宿主中往往表现不佳。我们推测,对共生菌的选择可能足够迅速,以至于在新宿主环境中表现不佳的情况会迅速得到改善,从而使共生菌得以维持。在这里,我们对一种转染到新宿主黑腹果蝇中的螺原体菌株进行了这一预测的测试。在转染后的几代中,这种共生菌对后代的传播效率很低,并给宿主带来了严重的适应性代价。我们观察到,对宿主适应性的影响迅速演变,在新宿主中经过17代后就无法检测到了,而在此期间垂直传播效率的反应则很差。我们的结果表明,在共生菌仅在共生的一个方面表现不佳的情况下,可能更容易建立长期共生关系。

相似文献

3
Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps.
Heredity (Edinb). 2014 Apr;112(4):399-408. doi: 10.1038/hdy.2013.118. Epub 2013 Nov 27.
5
Toxin and Genome Evolution in a Drosophila Defensive Symbiosis.
Genome Biol Evol. 2019 Jan 1;11(1):253-262. doi: 10.1093/gbe/evy272.
6
Rapid divergence in independent aspects of the compatibility phenotype in a interaction.
Microbiology (Reading). 2022 Dec;168(12). doi: 10.1099/mic.0.001281.
7
Evolution and Diversity of Inherited Spiroplasma Symbionts in Myrmica Ants.
Appl Environ Microbiol. 2018 Jan 31;84(4). doi: 10.1128/AEM.02299-17. Print 2018 Feb 15.

引用本文的文献

1
Inducing novel endosymbioses by implanting bacteria in fungi.
Nature. 2024 Nov;635(8038):415-422. doi: 10.1038/s41586-024-08010-x. Epub 2024 Oct 2.
2
Similar cost of in experimental and natural aphid-endosymbiont associations.
Ecol Evol. 2022 Jan 24;12(1):e8551. doi: 10.1002/ece3.8551. eCollection 2022 Jan.
3
Rapid molecular evolution of symbionts of .
Microb Genom. 2021 Feb;7(2). doi: 10.1099/mgen.0.000503.
4
Metacommunity theory for transmission of heritable symbionts within insect communities.
Ecol Evol. 2019 Dec 2;10(3):1703-1721. doi: 10.1002/ece3.5754. eCollection 2020 Feb.
5
Symbiont interactions with non-native hosts limit the formation of new symbioses.
BMC Evol Biol. 2018 Mar 12;18(1):27. doi: 10.1186/s12862-018-1143-z.
6
Horizontal Transmission of Intracellular Insect Symbionts via Plants.
Front Microbiol. 2017 Nov 28;8:2237. doi: 10.3389/fmicb.2017.02237. eCollection 2017.
7
Evolution of reproductive parasites with direct fitness benefits.
Heredity (Edinb). 2018 Mar;120(3):266-281. doi: 10.1038/s41437-017-0022-5. Epub 2017 Dec 13.
8
Extended genomes: symbiosis and evolution.
Interface Focus. 2017 Oct 6;7(5):20170001. doi: 10.1098/rsfs.2017.0001. Epub 2017 Aug 18.
10
Superparasitism Drives Heritable Symbiont Epidemiology and Host Sex Ratio in a Wasp.
PLoS Pathog. 2016 Jun 20;12(6):e1005629. doi: 10.1371/journal.ppat.1005629. eCollection 2016 Jun.

本文引用的文献

1
ANALYZING TABLES OF STATISTICAL TESTS.
Evolution. 1989 Jan;43(1):223-225. doi: 10.1111/j.1558-5646.1989.tb04220.x.
2
Transcriptional responses in a Drosophila defensive symbiosis.
Mol Ecol. 2014 Mar;23(6):1558-1570. doi: 10.1111/mec.12603. Epub 2013 Dec 28.
3
Infectious adaptation: potential host range of a defensive endosymbiont in Drosophila.
Evolution. 2013 Apr;67(4):934-45. doi: 10.1111/evo.12020. Epub 2012 Dec 24.
5
Epidemiology in evolutionary time: the case of Wolbachia horizontal transmission between arthropod host species.
J Evol Biol. 2012 Nov;25(11):2149-60. doi: 10.1111/j.1420-9101.2012.02601.x. Epub 2012 Sep 4.
6
Evidence of diversity and recombination in Arsenophonus symbionts of the Bemisia tabaci species complex.
BMC Microbiol. 2012 Jan 18;12 Suppl 1(Suppl 1):S10. doi: 10.1186/1471-2180-12-S1-S10.
7
Population genetics of beneficial heritable symbionts.
Trends Ecol Evol. 2012 Apr;27(4):226-32. doi: 10.1016/j.tree.2011.10.005. Epub 2011 Nov 19.
8
Phenotype and transmission efficiency of artificial and natural male-killing Spiroplasma infections in Drosophila melanogaster.
J Invertebr Pathol. 2012 Feb;109(2):243-7. doi: 10.1016/j.jip.2011.10.003. Epub 2011 Nov 6.
9
Microbiology. Rapid insect evolution by symbiont transfer.
Science. 2011 Apr 8;332(6026):185-6. doi: 10.1126/science.1205386.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验