Suppr超能文献

高温和低温对果蝇宿主体内杀雄螺旋体共生菌的感染密度和垂直传播有着不同的影响。

High and low temperatures differently affect infection density and vertical transmission of male-killing Spiroplasma symbionts in Drosophila hosts.

作者信息

Anbutsu Hisashi, Goto Shunsuke, Fukatsu Takema

机构信息

Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan.

出版信息

Appl Environ Microbiol. 2008 Oct;74(19):6053-9. doi: 10.1128/AEM.01503-08. Epub 2008 Aug 15.

Abstract

We investigated the vertical transmission, reproductive phenotype, and infection density of a male-killing Spiroplasma symbiont in two Drosophila species under physiological high and low temperatures through successive host generations. In both the native host Drosophila nebulosa and the nonnative host Drosophila melanogaster, the symbiont infection and the male-killing phenotype were stably maintained at 25 degrees C, rapidly lost at 18 degrees C, and gradually lost at 28 degrees C. In the nonnative host, both the high and low temperatures significantly suppressed the infection density of the spiroplasma. In the native host, by contrast, the low temperature suppressed the infection density of the spiroplasma whereas the high temperature had little effect on the infection density. These results suggested that the low temperature suppresses both the infection density and the vertical transmission of the spiroplasma whereas the high temperature suppresses the vertical transmission preferentially. The spiroplasma density was consistently higher in the native host than in the nonnative host, suggesting that the host genotype may affect the infection density of the symbiont. The temperature- and genotype-dependent instability of the symbiont infection highlights a complex genotype-by-genotype-by-environment interaction and may be relevant to the low infection frequencies of the male-killing spiroplasmas in natural Drosophila populations.

摘要

我们通过连续的宿主世代,研究了在生理高温和低温条件下,两种果蝇物种中一种杀雄螺原体共生菌的垂直传播、生殖表型和感染密度。在本地宿主星云果蝇和非本地宿主黑腹果蝇中,共生菌感染和杀雄表型在25摄氏度时稳定维持,在18摄氏度时迅速丧失,在28摄氏度时逐渐丧失。在非本地宿主中,高温和低温均显著抑制了螺原体的感染密度。相比之下,在本地宿主中,低温抑制了螺原体的感染密度,而高温对感染密度影响不大。这些结果表明,低温既抑制螺原体的感染密度,也抑制其垂直传播,而高温则优先抑制垂直传播。本地宿主中的螺原体密度始终高于非本地宿主,这表明宿主基因型可能影响共生菌的感染密度。共生菌感染的温度和基因型依赖性不稳定性突出了一种复杂的基因型-基因型-环境相互作用,可能与自然果蝇种群中杀雄螺原体的低感染频率有关。

相似文献

4
Prevalence of a non-male-killing spiroplasma in natural populations of Drosophila hydei.
Appl Environ Microbiol. 2006 Oct;72(10):6667-73. doi: 10.1128/AEM.00803-06.
6
Density dynamics of diverse Spiroplasma strains naturally infecting different species of Drosophila.
Fly (Austin). 2013 Jul-Sep;7(3):204-10. doi: 10.4161/fly.25469. Epub 2013 Jul 11.
7
Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps.
Heredity (Edinb). 2014 Apr;112(4):399-408. doi: 10.1038/hdy.2013.118. Epub 2013 Nov 27.
10
Toxin and Genome Evolution in a Drosophila Defensive Symbiosis.
Genome Biol Evol. 2019 Jan 1;11(1):253-262. doi: 10.1093/gbe/evy272.

引用本文的文献

1
Sex ratio distorting microbes exacerbate arthropod extinction risk in variable environments.
Ecol Evol. 2024 Apr 1;14(4):e11216. doi: 10.1002/ece3.11216. eCollection 2024 Apr.
3
Temperature effects on cellular host-microbe interactions explain continent-wide endosymbiont prevalence.
Curr Biol. 2022 Feb 28;32(4):878-888.e8. doi: 10.1016/j.cub.2021.11.065. Epub 2021 Dec 16.
4
Endosymbiotic Male-Killing Affects the Physiological and Behavioral Ecology of - Interactions.
Appl Environ Microbiol. 2022 Feb 8;88(3):e0197221. doi: 10.1128/AEM.01972-21. Epub 2021 Dec 8.
5
-Conferred Antiviral Protection Is Determined by Developmental Temperature.
mBio. 2021 Oct 26;12(5):e0292320. doi: 10.1128/mBio.02923-20. Epub 2021 Sep 7.
6
Spider Mites Singly Infected With Either or Have Reduced Thermal Tolerance.
Front Microbiol. 2021 Jul 7;12:706321. doi: 10.3389/fmicb.2021.706321. eCollection 2021.
7
Endosymbiont diversity in natural populations of Tetranychus mites is rapidly lost under laboratory conditions.
Heredity (Edinb). 2020 Apr;124(4):603-617. doi: 10.1038/s41437-020-0297-9. Epub 2020 Feb 11.
10
Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts.
PeerJ. 2018 May 8;6:e4629. doi: 10.7717/peerj.4629. eCollection 2018.

本文引用的文献

1
Clustal W and Clustal X version 2.0.
Bioinformatics. 2007 Nov 1;23(21):2947-8. doi: 10.1093/bioinformatics/btm404. Epub 2007 Sep 10.
2
Spiroplasmas: diversity of arthropod reservoirs and host-parasite relationships.
Science. 1982 Jul 2;217(4554):57-9. doi: 10.1126/science.217.4554.57.
3
Aphid thermal tolerance is governed by a point mutation in bacterial symbionts.
PLoS Biol. 2007 May;5(5):e96. doi: 10.1371/journal.pbio.0050096.
5
Infection density of Wolbachia endosymbiont affected by co-infection and host genotype.
Biol Lett. 2005 Dec 22;1(4):488-91. doi: 10.1098/rsbl.2005.0340.
6
Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host.
Appl Environ Microbiol. 2006 Jul;72(7):4805-10. doi: 10.1128/AEM.00416-06.
7
Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures.
Proc Biol Sci. 2006 Mar 7;273(1586):603-10. doi: 10.1098/rspb.2005.3348.
8
Effect of temperature on Wolbachia density and impact on cytoplasmic incompatibility.
Parasitology. 2006 Jan;132(Pt 1):49-56. doi: 10.1017/S0031182005008723.
9
Male-killing Spiroplasma naturally infecting Drosophila melanogaster.
Insect Mol Biol. 2005 Jun;14(3):281-7. doi: 10.1111/j.1365-2583.2005.00558.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验