Suppr超能文献

增材制造医学模型中几何误差的敏感性分析。

Sensitivity analysis of geometric errors in additive manufacturing medical models.

作者信息

Pinto Jose Miguel, Arrieta Cristobal, Andia Marcelo E, Uribe Sergio, Ramos-Grez Jorge, Vargas Alex, Irarrazaval Pablo, Tejos Cristian

机构信息

Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile; Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile.

Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile; Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile.

出版信息

Med Eng Phys. 2015 Mar;37(3):328-34. doi: 10.1016/j.medengphy.2015.01.009. Epub 2015 Jan 31.

Abstract

Additive manufacturing (AM) models are used in medical applications for surgical planning, prosthesis design and teaching. For these applications, the accuracy of the AM models is essential. Unfortunately, this accuracy is compromised due to errors introduced by each of the building steps: image acquisition, segmentation, triangulation, printing and infiltration. However, the contribution of each step to the final error remains unclear. We performed a sensitivity analysis comparing errors obtained from a reference with those obtained modifying parameters of each building step. Our analysis considered global indexes to evaluate the overall error, and local indexes to show how this error is distributed along the surface of the AM models. Our results show that the standard building process tends to overestimate the AM models, i.e. models are larger than the original structures. They also show that the triangulation resolution and the segmentation threshold are critical factors, and that the errors are concentrated at regions with high curvatures. Errors could be reduced choosing better triangulation and printing resolutions, but there is an important need for modifying some of the standard building processes, particularly the segmentation algorithms.

摘要

增材制造(AM)模型在医疗应用中用于手术规划、假体设计和教学。对于这些应用,AM模型的准确性至关重要。不幸的是,由于每个构建步骤(图像采集、分割、三角测量、打印和渗透)引入的误差,这种准确性受到了影响。然而,每个步骤对最终误差的贡献仍不明确。我们进行了一项敏感性分析,将从参考模型获得的误差与通过修改每个构建步骤的参数而获得的误差进行比较。我们的分析考虑了全局指标来评估总体误差,以及局部指标来显示该误差如何沿AM模型的表面分布。我们的结果表明,标准构建过程往往会高估AM模型,即模型比原始结构大。结果还表明,三角测量分辨率和分割阈值是关键因素,并且误差集中在曲率高的区域。通过选择更好的三角测量和打印分辨率可以减少误差,但非常需要修改一些标准构建过程,特别是分割算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验