Suppr超能文献

医学增材制造中用于骨骼的CT图像分割方法。

CT image segmentation methods for bone used in medical additive manufacturing.

作者信息

van Eijnatten Maureen, van Dijk Roelof, Dobbe Johannes, Streekstra Geert, Koivisto Juha, Wolff Jan

机构信息

Department of Oral and Maxillofacial Surgery, 3D Innovation Lab, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.

Department of Oral and Maxillofacial Surgery, 3D Innovation Lab, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.

出版信息

Med Eng Phys. 2018 Jan;51:6-16. doi: 10.1016/j.medengphy.2017.10.008. Epub 2017 Oct 31.

Abstract

AIM OF THE STUDY

The accuracy of additive manufactured medical constructs is limited by errors introduced during image segmentation. The aim of this study was to review the existing literature on different image segmentation methods used in medical additive manufacturing.

METHODS

Thirty-two publications that reported on the accuracy of bone segmentation based on computed tomography images were identified using PubMed, ScienceDirect, Scopus, and Google Scholar. The advantages and disadvantages of the different segmentation methods used in these studies were evaluated and reported accuracies were compared.

RESULTS

The spread between the reported accuracies was large (0.04 mm - 1.9 mm). Global thresholding was the most commonly used segmentation method with accuracies under 0.6 mm. The disadvantage of this method is the extensive manual post-processing required. Advanced thresholding methods could improve the accuracy to under 0.38 mm. However, such methods are currently not included in commercial software packages. Statistical shape model methods resulted in accuracies from 0.25 mm to 1.9 mm but are only suitable for anatomical structures with moderate anatomical variations.

CONCLUSIONS

Thresholding remains the most widely used segmentation method in medical additive manufacturing. To improve the accuracy and reduce the costs of patient-specific additive manufactured constructs, more advanced segmentation methods are required.

摘要

研究目的

增材制造的医学构建体的精度受到图像分割过程中引入的误差的限制。本研究的目的是回顾关于医学增材制造中使用的不同图像分割方法的现有文献。

方法

使用PubMed、ScienceDirect、Scopus和谷歌学术搜索,确定了32篇报告基于计算机断层扫描图像的骨分割精度的出版物。评估了这些研究中使用的不同分割方法的优缺点,并比较了报告的精度。

结果

报告的精度之间的差异很大(0.04毫米 - 1.9毫米)。全局阈值化是最常用的分割方法,精度在0.6毫米以下。该方法的缺点是需要大量的手动后处理。先进的阈值化方法可以将精度提高到0.38毫米以下。然而,此类方法目前未包含在商业软件包中。统计形状模型方法的精度为0.25毫米至1.9毫米,但仅适用于解剖变异适中的解剖结构。

结论

阈值化仍然是医学增材制造中使用最广泛的分割方法。为了提高精度并降低定制增材制造构建体的成本,需要更先进的分割方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验