Suppr超能文献

从中医临床数据中检测草药-症状关联

Detection of herb-symptom associations from traditional chinese medicine clinical data.

作者信息

Li Yu-Bing, Zhou Xue-Zhong, Zhang Run-Shun, Wang Ying-Hui, Peng Yonghong, Hu Jing-Qing, Xie Qi, Xue Yan-Xing, Xu Li-Li, Liu Xiao-Fang, Liu Bao-Yan

机构信息

School of Computer and Information Technology and Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing 100044, China.

Guanganmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.

出版信息

Evid Based Complement Alternat Med. 2015;2015:270450. doi: 10.1155/2015/270450. Epub 2015 Jan 11.

Abstract

Background. Traditional Chinese medicine (TCM) is an individualized medicine by observing the symptoms and signs (symptoms in brief) of patients. We aim to extract the meaningful herb-symptom relationships from large scale TCM clinical data. Methods. To investigate the correlations between symptoms and herbs held for patients, we use four clinical data sets collected from TCM outpatient clinical settings and calculate the similarities between patient pairs in terms of the herb constituents of their prescriptions and their manifesting symptoms by cosine measure. To address the large-scale multiple testing problems for the detection of herb-symptom associations and the dependence between herbs involving similar efficacies, we propose a network-based correlation analysis (NetCorrA) method to detect the herb-symptom associations. Results. The results show that there are strong positive correlations between symptom similarity and herb similarity, which indicates that herb-symptom correspondence is a clinical principle adhered to by most TCM physicians. Furthermore, the NetCorrA method obtains meaningful herb-symptom associations and performs better than the chi-square correlation method by filtering the false positive associations. Conclusions. Symptoms play significant roles for the prescriptions of herb treatment. The herb-symptom correspondence principle indicates that clinical phenotypic targets (i.e., symptoms) of herbs exist and would be valuable for further investigations.

摘要

背景。中医是通过观察患者的症状和体征(简称症状)进行个体化治疗的医学。我们旨在从大规模中医临床数据中提取有意义的药症关系。方法。为了研究患者所服用的药物与症状之间的相关性,我们使用了从中医门诊临床环境收集的四个临床数据集,并通过余弦度量计算患者对在其处方的药物成分和表现出的症状方面的相似性。为了解决检测药症关联时的大规模多重检验问题以及涉及相似功效的药物之间的依赖性,我们提出了一种基于网络的相关性分析(NetCorrA)方法来检测药症关联。结果。结果表明症状相似性与药物相似性之间存在很强的正相关性,这表明药症对应是大多数中医医生遵循的临床原则。此外,NetCorrA方法通过过滤假阳性关联获得了有意义的药症关联,并且比卡方相关性方法表现更好。结论。症状在草药治疗处方中起着重要作用。药症对应原则表明草药的临床表型靶点(即症状)是存在的,并且对于进一步的研究将是有价值的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1be/4305614/c4226f7989a3/ECAM2015-270450.001.jpg

相似文献

1
Detection of herb-symptom associations from traditional chinese medicine clinical data.
Evid Based Complement Alternat Med. 2015;2015:270450. doi: 10.1155/2015/270450. Epub 2015 Jan 11.
3
Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network.
Comput Struct Biotechnol J. 2019 Feb 8;17:282-290. doi: 10.1016/j.csbj.2019.02.002. eCollection 2019.
4
SMRGAT: A traditional Chinese herb recommendation model based on a multi-graph residual attention network and semantic knowledge fusion.
J Ethnopharmacol. 2023 Oct 28;315:116693. doi: 10.1016/j.jep.2023.116693. Epub 2023 May 30.
5
Mining Important Herb Combinations of Traditional Chinese Medicine against Hypertension Based on the Symptom-Herb Network Combined with Network Pharmacology.
Evid Based Complement Alternat Med. 2022 Mar 22;2022:5850899. doi: 10.1155/2022/5850899. eCollection 2022.
7
FangNet: Mining herb hidden knowledge from TCM clinical effective formulas using structure network algorithm.
Comput Struct Biotechnol J. 2020 Dec 4;19:62-71. doi: 10.1016/j.csbj.2020.11.036. eCollection 2021.
8
Meta-path guided graph attention network for explainable herb recommendation.
Health Inf Sci Syst. 2023 Jan 18;11(1):5. doi: 10.1007/s13755-022-00207-6. eCollection 2023 Dec.
9
[Study on relevance mining of "core drug action target" in Dictionary of Traditional Chinese Medicine Prescriptions].
Zhongguo Zhong Yao Za Zhi. 2018 Oct;43(19):3919-3926. doi: 10.19540/j.cnki.cjcmm.20180710.002.

引用本文的文献

1
Mining Important Herb Combinations of Traditional Chinese Medicine against Hypertension Based on the Symptom-Herb Network Combined with Network Pharmacology.
Evid Based Complement Alternat Med. 2022 Mar 22;2022:5850899. doi: 10.1155/2022/5850899. eCollection 2022.
3
Constructing fine-grained entity recognition corpora based on clinical records of traditional Chinese medicine.
BMC Med Inform Decis Mak. 2020 Apr 6;20(1):64. doi: 10.1186/s12911-020-1079-2.
4
Applications of network analysis to routinely collected health care data: a systematic review.
J Am Med Inform Assoc. 2018 Feb 1;25(2):210-221. doi: 10.1093/jamia/ocx052.
5
Multistage analysis method for detection of effective herb prescription from clinical data.
Front Med. 2018 Apr;12(2):206-217. doi: 10.1007/s11684-017-0525-8. Epub 2017 Jun 14.
6
Clinical Features for Mild Hand, Foot and Mouth Disease in China.
PLoS One. 2015 Aug 24;10(8):e0135503. doi: 10.1371/journal.pone.0135503. eCollection 2015.

本文引用的文献

1
Use of Kampo diagnosis in randomized controlled trials of Kampo products in Japan: a systematic review.
PLoS One. 2014 Aug 13;9(8):e104422. doi: 10.1371/journal.pone.0104422. eCollection 2014.
2
Human symptoms-disease network.
Nat Commun. 2014 Jun 26;5:4212. doi: 10.1038/ncomms5212.
3
Data Mining Methods for Omics and Knowledge of Crude Medicinal Plants toward Big Data Biology.
Comput Struct Biotechnol J. 2013 Mar 23;4:e201301010. doi: 10.5936/csbj.201301010. eCollection 2013.
5
6
Feature representation in the biclustering of symptom-herb relationship in Chinese medicine.
Chin J Integr Med. 2011 Sep;17(9):663-8. doi: 10.1007/s11655-011-0842-8. Epub 2011 Sep 11.
7
Patterns of herbal combination for the treatment of insomnia commonly employed by highly experienced Chinese medicine physicians.
Chin J Integr Med. 2011 Sep;17(9):655-62. doi: 10.1007/s11655-011-0841-9. Epub 2011 Sep 11.
9
Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support.
Artif Intell Med. 2010 Feb-Mar;48(2-3):139-52. doi: 10.1016/j.artmed.2009.07.012. Epub 2010 Feb 1.
10
Text mining for traditional Chinese medical knowledge discovery: a survey.
J Biomed Inform. 2010 Aug;43(4):650-60. doi: 10.1016/j.jbi.2010.01.002. Epub 2010 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验