Suppr超能文献

基于症状-药物网络结合网络药理学挖掘抗高血压中药重要药对

Mining Important Herb Combinations of Traditional Chinese Medicine against Hypertension Based on the Symptom-Herb Network Combined with Network Pharmacology.

作者信息

Sun Zhenhai, Xu Yunsheng, An Wenrong, Bi Siling, Xu Sai, Zhang Rui, Cong Mingyang, Chen Shouqiang

机构信息

Shandong University of Traditional Chinese Medicine, Jinan, China.

The Second Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China.

出版信息

Evid Based Complement Alternat Med. 2022 Mar 22;2022:5850899. doi: 10.1155/2022/5850899. eCollection 2022.

Abstract

Although data mining methods are extensively used in the rule analysis of famous old traditional Chinese medicine (TCM) experts' prescriptions for the treatment of hypertension, most of them only mine the association between herbs and herbs, ignoring the importance of symptoms in the disease. This study collected 439 cases of hypertension treated by famous old TCM experts from the FangNet platform. Using the structure network algorithm, the symptom-herb network was constructed, which redefined the importance of herb in disease. Based on the network, 21 driver herbs, 76 herb pairs, and 41 symptom-herb associations were mined. Finally, the basic prescription composed of Gouteng (Uncariae Ramulus cum Uncis), Huanglian (Coptidis Rhizoma), Chuanxiong (Chuanxiong Rhizoma), Gegen (Puerariae Lobatae Radix), Danggui (Angelicae Sinensis Radix), and Huangqin (Scutellariae Radix) was found. These herbs are the most significant among all herbs, and they have a potential correlation with each other. To further verify the rationality of the data mining results, we adopted the network pharmacology method. Network pharmacological analysis shows that the five core targets in the basic prescription include IL6, VEGFA, TNF, TP53, and EGF, which link 10 significant active compounds and 7 important KEGG pathways. It was predicted that anti-inflammatory, antioxidant, vascular endothelial protection, emotion regulation, and ion channel intervention might be the main mechanisms of the basic prescription against hypertension. This study reveals the prescription rule of famous old TCM experts for treating hypertension from a new perspective, which provides a new approach to inherit the academic experience of famous old TCM experts and develop new drugs.

摘要

虽然数据挖掘方法在名老中医治疗高血压方剂的用药规律分析中被广泛应用,但大多仅挖掘药物与药物之间的关联,忽视了症状在疾病中的重要性。本研究从方证网络平台收集了439例名老中医治疗的高血压病例。运用结构网络算法构建症状-药物网络,重新界定了药物在疾病中的重要性。基于该网络,挖掘出21味核心药物、76对药对以及41种症状-药物关联。最终发现由钩藤、黄连、川芎、葛根、当归、黄芩组成的基础方剂。这些药物在所有药物中最为显著,且它们之间存在潜在关联。为进一步验证数据挖掘结果的合理性,我们采用了网络药理学方法。网络药理学分析表明,基础方剂中的五个核心靶点包括白细胞介素6(IL6)、血管内皮生长因子A(VEGFA)、肿瘤坏死因子(TNF)、肿瘤蛋白53(TP53)和表皮生长因子(EGF),它们连接10种显著活性化合物和7条重要的京都基因与基因组百科全书(KEGG)通路。预测抗炎、抗氧化、血管内皮保护、情绪调节和离子通道干预可能是基础方剂治疗高血压的主要作用机制。本研究从新的角度揭示了名老中医治疗高血压的方剂规律,为传承名老中医的学术经验和研发新药提供了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0847/8964163/672a9ce7205d/ECAM2022-5850899.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验