Shahroosvand Hashem, Zakavi Saeed, Sousaraei Ahmad, Eskandari Mortaza
Chemistry Department, University of Zanjan, Zanjan, Iran.
Phys Chem Chem Phys. 2015 Mar 7;17(9):6347-58. doi: 10.1039/c4cp04722b.
We report on the theoretical and experimental studies of the new dye-sensitized solar cells functionalized with 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin zinc(II) complexes bearing 2- and 8-bromo substituents at the β positions. In agreement with the results of TD-DFT calculations, the absorption maxima of di- and octa-brominated Zn(II) complexes, ZnTCPPBr2 and ZnTCPPBr8, exhibited large red-shift compared to that of the non-brominated free base porphyrin (H2TCPP). Furthermore, DFT calculations showed that the higher stabilization of the LUMO levels relative to the HOMO ones makes the HOMO-LUMO gap of the brominated Zn-porphyrins models smaller compared to that of the nonbrominated counterparts, which explains the red shifts of the Soret and Q bands of the brominated compounds. Solar cells containing the new saddle-shaped Zn(II) porphyrins were subjected to analysis in a photovoltaic calibration laboratory to determine their solar to electric energy conversion. In this regard, we found that the overall conversion efficiency of ZnTCPPBr8 adsorbed on TiO2 nanocrystalline films was 5 times as large as that of ZnTCPPBr2 adsorbed on the same films. The effect of the increasing number of Br groups on the photovoltaic performance of the complexes was compared to the results of computational methods using ab initio DFT molecular dynamics simulations and quantum dynamics calculations of electronic relaxation to investigate the interfacial electron transfer (IET) in TCPPBrx/TiO2-anatase nanostructures. Better IET in ZnTCPPBr8 compared to ZnTCPPBr2, and in H2TCPP was evaluated from interfacial electron transfer (IET) simulations. The IET results indicate that electron injection in ZnTCPPBr8-TiO2 (τ = 25 fs) can be up to 5 orders of magnitude faster than ZnTCPPBr2-TiO2 (τ = 125 fs). Both experimental and theoretical results demonstrate that the increase of the number of bromo-substituents at the β-pyrrole positions of the porphyrin macrocycle created a new class of porphyrin-based DSSC, which exhibits a remarkable increase in the photovoltaic performance compared to non-brominated porphyrins.
我们报告了新型染料敏化太阳能电池的理论和实验研究,该电池用在β位带有2-和8-溴取代基的5,10,15,20-四(4-羧基苯基)卟啉锌(II)配合物进行功能化。与TD-DFT计算结果一致,二溴化和八溴化的Zn(II)配合物ZnTCPPBr2和ZnTCPPBr8的吸收最大值与未溴化的游离碱卟啉(H2TCPP)相比呈现出较大的红移。此外,DFT计算表明,相对于HOMO能级,LUMO能级具有更高的稳定性,使得溴化锌卟啉模型的HOMO-LUMO能隙比未溴化的对应物更小,这解释了溴化化合物的Soret带和Q带的红移。含有新型鞍形Zn(II)卟啉的太阳能电池在光伏校准实验室中进行分析,以确定其太阳能到电能的转换。在这方面,我们发现吸附在TiO2纳米晶薄膜上的ZnTCPPBr8的整体转换效率是吸附在同一薄膜上的ZnTCPPBr2的5倍。将Br基团数量增加对配合物光伏性能的影响与使用从头算DFT分子动力学模拟和电子弛豫的量子动力学计算的计算方法结果进行比较,以研究TCPPBrx/TiO2-锐钛矿纳米结构中的界面电子转移(IET)。通过界面电子转移(IET)模拟评估了ZnTCPPBr8与ZnTCPPBr2以及H2TCPP相比更好的IET。IET结果表明,ZnTCPPBr8-TiO2中的电子注入(τ = 25 fs)比ZnTCPPBr2-TiO2中的电子注入(τ = 125 fs)快多达5个数量级。实验和理论结果均表明,卟啉大环β-吡咯位置上溴取代基数量的增加产生了一类新型的基于卟啉的染料敏化太阳能电池,与未溴化的卟啉相比,其光伏性能有显著提高。