Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.
Acc Chem Res. 2015 May 19;48(5):1441-9. doi: 10.1021/ar500428t. Epub 2015 Apr 28.
Over the past two decades, dye-sensitized solar cells (DSSCs) have become a viable and relatively cheap alternative to conventional crystalline silicon-based systems. At the heart of a DSSC is a wide band gap semiconductor, typically a TiO2 nanoparticle network, sensitized with a visible light absorbing chromophore. Ru(II)-polypyridines are often utilized as chromophores thanks to their chemical stability, long-lived metal-to-ligand charge transfer (MLCT) excited states, tunable redox potentials, and near perfect quantum efficiency of interfacial electron transfer (IET) into TiO2. More recently, coordination compounds based on first row transition metals, such as Fe(II)-polypyridines, gained some attention as potential sensitizers in DSSCs due to their low cost and abundance. While such complexes can in principle sensitize TiO2, they do so very inefficiently since their photoactive MLCT states undergo intersystem crossing (ISC) into low-lying metal-centered states on a subpicosecond time scale. Competition between the ultrafast ISC events and IET upon initial excitation of Fe(II)-polypyridines is the main obstacle to their utilization in DSSCs. Suitability of Fe(II)-polypyridines to serve as sensitizers could therefore be improved by adjusting relative rates of the ISC and IET processes, with the goal of making the IET more competitive with ISC. Our research program in computational inorganic chemistry utilizes a variety of tools based on density functional theory (DFT), time-dependent density functional theory (TD-DFT) and quantum dynamics to investigate structure-property relationships in Fe(II)-polypyridines, specifically focusing on their function as chromophores. One of the difficult problems is the accurate determination of energy differences between electronic states with various spin multiplicities (i.e., (1)A, (1,3)MLCT, (3)T, (5)T) in the ISC cascade. We have shown that DFT is capable of predicting the trends in the energy ordering of these electronic states in a set of structurally related complexes with the help of appropriate benchmarks, based either on experimental data or higher-level ab initio calculations. Models based on TD-DFT and quantum dynamics approaches have proven very useful in understanding IET processes in Fe(II)-polypyridine-TiO2 assemblies. For example, they helped us to elucidate the origin of "band selective" sensitization in the [Fe(bpy-dca)2(CN)2]-TiO2 assembly (bpy-dca = 2,2'-bipyridine-4,4'-dicarboxylic acid), first observed by Ferrere and Gregg [ Ferrere , S. ; Gregg , B. A. J. Am. Chem. Soc. 1998 , 120 , 843 . ]. They also shed light on the relationship between the linker group that anchors Fe(II)-polypyridines onto the TiO2 surface and the speed of IET in Fe(II)-polypyridine-TiO2 assemblies. More interestingly, our results show that the IET efficiency is strongly correlated with the amount of electron density on the linker group and that one can obtain insights into the IET in dye-semiconductor assemblies based on ground state electronic structure calculations alone. This may be useful for quick screening of a large number of complexes for use as potential sensitizers in DSSCs, especially if followed up by TD-DFT and quantum dynamics simulations for selected target compounds to confirm efficient sensitization. While our focus over the past few years has been exclusively on Fe(II)-polypyridines, the computational strategies outlined in this Account are applicable to a wide variety of sensitizers.
在过去的二十年中,染料敏化太阳能电池(DSSC)已经成为一种可行且相对便宜的传统晶体硅基系统替代品。DSSC 的核心是宽带隙半导体,通常是 TiO2 纳米颗粒网络,用可见吸收的生色团敏化。由于其化学稳定性、长寿命的金属-配体电荷转移(MLCT)激发态、可调谐的氧化还原电位以及界面电子转移(IET)到 TiO2 的近乎完美量子效率,Ru(II)-多吡啶常被用作生色团。最近,基于第一过渡金属的配位化合物,如 Fe(II)-多吡啶,由于其低成本和丰富,作为 DSSC 中的潜在敏化剂引起了一些关注。虽然这些配合物原则上可以敏化 TiO2,但由于其光活性 MLCT 态在亚皮秒时间尺度上经历系间窜越(ISC)到低能金属中心态,因此效率非常低。Fe(II)-多吡啶初始激发时,ISC 事件和 IET 之间的竞争是其在 DSSC 中应用的主要障碍。因此,通过调整 ISC 和 IET 过程的相对速率,可以提高 Fe(II)-多吡啶作为敏化剂的适用性,目标是使 IET 更具竞争力。我们在计算无机化学领域的研究计划利用了各种基于密度泛函理论(DFT)、含时密度泛函理论(TD-DFT)和量子动力学的工具来研究 Fe(II)-多吡啶的结构-性质关系,特别是专注于它们作为生色团的功能。其中一个难题是准确确定ISC 级联中具有各种自旋多重性(即(1)A、(1,3)MLCT、(3)T、(5)T)的电子态之间的能量差异。我们已经表明,DFT 能够在一组结构相关的配合物中预测这些电子态的能量排序趋势,这些配合物具有适当的基准,基于实验数据或更高水平的从头计算。基于 TD-DFT 和量子动力学方法的模型已被证明非常有助于理解 Fe(II)-多吡啶-TiO2 组装体中的 IET 过程。例如,它们帮助我们阐明了 [Fe(bpy-dca)2(CN)2]-TiO2 组装体(bpy-dca = 2,2'-联吡啶-4,4'-二羧酸)中首次观察到的“带选择性”敏化的起源,Ferrere 和 Gregg [Ferrere, S.; Gregg, B. A. J. Am. Chem. Soc. 1998, 120, 843.]。它们还揭示了将 Fe(II)-多吡啶固定在 TiO2 表面的连接基团与 Fe(II)-多吡啶-TiO2 组装体中 IET 速度之间的关系。更有趣的是,我们的结果表明 IET 效率与连接基团上的电子密度强烈相关,并且可以仅基于基态电子结构计算来获得对染料-半导体组装体中 IET 的了解。这可能有助于快速筛选大量用作 DSSC 潜在敏化剂的配合物,特别是如果随后对选定的目标化合物进行 TD-DFT 和量子动力学模拟以确认有效的敏化。虽然我们过去几年的重点一直是 Fe(II)-多吡啶,但本账户中概述的计算策略适用于各种敏化剂。