Prakobna Kasinee, Galland Sylvain, Berglund Lars A
Department of Fibre and Polymer Technology and ‡Wallenberg Wood Science Centre, KTH Royal Institute of Technology , SE-10044 Stockholm, Sweden.
Biomacromolecules. 2015 Mar 9;16(3):904-12. doi: 10.1021/bm5018194. Epub 2015 Feb 17.
Moisture stability and brittleness are challenges for plant fiber biocomposites intended for load-bearing applications, for instance those based on an amylopectin-rich (AP) starch matrix. Core-shell amylopectin-coated cellulose nanofibers and nanocomposites are prepared to investigate effects from the distribution of AP matrix. The core-shell nanocomposites are compared with nanocomposites with more irregular amylopectin (AP) distribution. Colloidal properties (DLS), AP adsorption, nanofiber dimensions (atomic force microscopy), and nanocomposite structure (transmission electron microscopy) are analyzed. Tensile tests are performed at different moisture contents. The core-shell nanofibers result in exceptionally moisture stable, ductile, and strong nanocomposites, much superior to reference CNF/AP nanocomposites with more irregular AP distribution. The reduction in AP properties is less pronounced as the AP forms a favorable interphase around individual CNF nanofibers.
对于用于承重应用的植物纤维生物复合材料而言,例如基于富含支链淀粉(AP)的淀粉基质的复合材料,水分稳定性和脆性是其面临的挑战。制备核壳结构的支链淀粉包覆纤维素纳米纤维及纳米复合材料,以研究AP基质分布产生的影响。将核壳纳米复合材料与支链淀粉(AP)分布更不规则的纳米复合材料进行比较。分析了胶体性质(动态光散射)、AP吸附、纳米纤维尺寸(原子力显微镜)和纳米复合材料结构(透射电子显微镜)。在不同水分含量下进行拉伸试验。核壳纳米纤维可制备出具有出色水分稳定性、韧性和强度的纳米复合材料,远优于支链淀粉分布更不规则的参比CNF/AP纳米复合材料。由于AP在单个CNF纳米纤维周围形成了有利的界面相,AP性能的降低不太明显。