Floege Jürgen, Gillespie Iain A, Kronenberg Florian, Anker Stefan D, Gioni Ioanna, Richards Sharon, Pisoni Ronald L, Robinson Bruce M, Marcelli Daniele, Froissart Marc, Eckardt Kai-Uwe
Nephrology, RWTH University of Aachen, Aachen, Germany.
Center for Observational Research (CfOR), Amgen Ltd, Uxbridge, UK.
Kidney Int. 2015 May;87(5):996-1008. doi: 10.1038/ki.2014.419. Epub 2015 Feb 4.
Although mortality risk scores for chronic hemodialysis (HD) patients should have an important role in clinical decision-making, those currently available have limited applicability, robustness, and generalizability. Here we applied a modified Framingham Heart Study approach to derive 1- and 2-year all-cause mortality risk scores using a 11,508 European incident HD patient database (AROii) recruited between 2007 and 2009. This scoring model was validated externally using similar-sized Dialysis Outcomes and Practice Patterns Survey (DOPPS) data. For AROii, the observed 1- and 2-year mortality rates were 13.0 (95% confidence interval (CI; 12.3-13.8)) and 11.2 (10.4-12.1)/100 patient years, respectively. Increasing age, low body mass index, history of cardiovascular disease or cancer, and use of a vascular access catheter during baseline were consistent predictors of mortality. Among baseline laboratory markers, hemoglobin, ferritin, C-reactive protein, serum albumin, and creatinine predicted death within 1 and 2 years. When applied to the DOPPS population, the predictive risk score models were highly discriminatory, and generalizability remained high when restricted by incidence/prevalence and geographic location (C-statistics 0.68-0.79). This new model offers improved predictive power over age/comorbidity-based models and also predicted early mortality (C-statistic 0.71). Our new model delivers a robust and reproducible mortality risk score, based on readily available clinical and laboratory data.
尽管慢性血液透析(HD)患者的死亡风险评分在临床决策中应发挥重要作用,但目前可用的评分在适用性、稳健性和可推广性方面都很有限。在此,我们采用改良的弗雷明汉心脏研究方法,利用2007年至2009年招募的11508例欧洲新发病HD患者数据库(AROii)得出1年和2年全因死亡风险评分。该评分模型使用规模相近的透析结果和实践模式调查(DOPPS)数据进行了外部验证。对于AROii,观察到的1年和2年死亡率分别为13.0(95%置信区间(CI);12.3 - 13.8)和11.2(10.4 - 12.1)/100患者年。年龄增加、低体重指数、心血管疾病或癌症病史以及基线时使用血管通路导管是死亡的一致预测因素。在基线实验室指标中,血红蛋白、铁蛋白、C反应蛋白、血清白蛋白和肌酐可预测1年和2年内的死亡。当应用于DOPPS人群时,预测风险评分模型具有高度区分性,并且在按发病率/患病率和地理位置进行限制时可推广性仍然很高(C统计量为0.68 - 0.79)。这个新模型比基于年龄/合并症的模型具有更高的预测能力,并且还能预测早期死亡(C统计量为0.71)。我们的新模型基于易于获得的临床和实验室数据,提供了一个稳健且可重复的死亡风险评分。