Suppr超能文献

利用韩国全国前瞻性队列研究对血液透析患者进行早期死亡预测:深度学习方法。

Predicting early mortality in hemodialysis patients: a deep learning approach using a nationwide prospective cohort in South Korea.

机构信息

Department of Artificial Intelligence, Ewha Womans University, Seoul, Republic of Korea.

Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.

出版信息

Sci Rep. 2024 Nov 29;14(1):29658. doi: 10.1038/s41598-024-80900-6.

Abstract

Early mortality after hemodialysis (HD) initiation significantly impacts the longevity of HD patients. This study aimed to quantify the effect sizes of risk factors on mortality using various machine learning approaches. A cohort of 3284 HD patients from the CRC-ESRD (2008-2014) was analyzed. Mortality risk models were validated using logistic regression, ridge regression, lasso regression, and decision trees, as well as ensemble methods like bagging and random forest. To better handle missing data and time-series variables, a recurrent neural network (RNN) with an autoencoder was also developed. Additionally, survival models predicting hazard ratios were employed using survival analysis techniques. The analysis included 1750 prevalent and 1534 incident HD patients (mean age 58.4 ± 13.6 years, 59.3% male). Over a median follow-up of 66.2 months, the overall mortality rate was 19.3%. Random forest models achieved an AUC of 0.8321 for first-year mortality prediction, which was further improved by the RNN with autoencoder (AUC 0.8357). The survival bagging model had the highest hazard ratio predictability (C-index 0.7756). A shorter dialysis duration (< 14.9 months) and high modified Charlson comorbidity index scores (7-9) were associated with hazard ratios up to 7.76 (C-index 0.7693). Comorbidities were more influential than age in predicting early mortality. Monitoring dialysis adequacy (KT/V), RAAS inhibitor use, and urine output is crucial for assessing early prognosis.

摘要

血液透析(HD)起始后的早期死亡率显著影响 HD 患者的寿命。本研究旨在使用各种机器学习方法量化危险因素对死亡率的影响大小。对来自 CRC-ESRD(2008-2014 年)的 3284 名 HD 患者队列进行了分析。使用逻辑回归、岭回归、套索回归和决策树以及袋装和随机森林等集成方法对死亡率风险模型进行了验证。为了更好地处理缺失数据和时间序列变量,还开发了具有自动编码器的递归神经网络(RNN)。此外,还使用生存分析技术开发了预测风险比的生存模型。分析包括 1750 名现患和 1534 名新发 HD 患者(平均年龄 58.4±13.6 岁,59.3%为男性)。在中位随访 66.2 个月期间,总死亡率为 19.3%。随机森林模型对第一年死亡率的预测获得了 0.8321 的 AUC,通过具有自动编码器的 RNN 进一步提高到 0.8357(AUC)。生存袋装模型具有最高的风险比预测能力(C 指数 0.7756)。较短的透析时间(<14.9 个月)和较高的改良 Charlson 合并症指数评分(7-9)与高达 7.76 的风险比相关(C 指数 0.7693)。合并症比年龄更能预测早期死亡率。监测透析充分性(KT/V)、肾素-血管紧张素-醛固酮系统抑制剂的使用和尿量对于评估早期预后至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c2d/11604665/b9f503c796ef/41598_2024_80900_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验