Suppr超能文献

通过线性判别分析从黄牛的单核苷酸多态性(SNP)基因型预测单倍型携带者

Predicting haplotype carriers from SNP genotypes in Bos taurus through linear discriminant analysis.

作者信息

Biffani Stefano, Dimauro Corrado, Macciotta Nicolò, Rossoni Attilio, Stella Alessandra, Biscarini Filippo

机构信息

Department of Bioinformatics, PTP, Via Einstein - Loc, Cascina Codazza, Lodi 26900, Italy.

出版信息

Genet Sel Evol. 2015 Feb 5;47(1):4. doi: 10.1186/s12711-015-0094-8.

Abstract

BACKGROUND

SNP (single nucleotide polymorphisms) genotype data are increasingly available in cattle populations and, among other things, can be used to predict carriers of specific haplotypes. It is therefore convenient to have a practical statistical method for the accurate classification of individuals into carriers and non-carriers. In this paper, we present a procedure combining variable selection (i.e. the selection of predictive SNPs) and linear discriminant analysis for the identification of carriers of a haplotype on BTA19 (Bos taurus autosome 19) known to be associated with reduced cow fertility. A population of 3645 Brown Swiss cows and bulls genotyped with the 54K SNP-chip was available for the analysis.

RESULTS

The overall error rate for the prediction of haplotype carriers was on average very low (∼≤1%). The error rate was found to depend on the number of SNPs in the model and their density around the region of the haplotype on BTA19. The minimum set of SNPs to still achieve accurate predictions was 5, with a total test error rate of 1.59.

CONCLUSIONS

The paper describes a procedure to accurately identify haplotype carriers from SNP genotypes in cattle populations. Very few misclassifications were observed, which indicates that this is a very reliable approach for potential applications in cattle breeding.

摘要

背景

单核苷酸多态性(SNP)基因型数据在牛群中越来越容易获得,并且除其他用途外,可用于预测特定单倍型的携带者。因此,拥有一种实用的统计方法来将个体准确分类为携带者和非携带者很方便。在本文中,我们提出了一种结合变量选择(即预测性SNP的选择)和线性判别分析的程序,用于识别已知与奶牛繁殖力降低相关的BTA19(牛常染色体19)上一种单倍型的携带者。有一个由3645头经54K SNP芯片基因分型的瑞士褐牛母牛和公牛组成的群体可用于分析。

结果

单倍型携带者预测的总体错误率平均非常低(约≤1%)。发现错误率取决于模型中的SNP数量及其在BTA19上的单倍型区域周围的密度。仍能实现准确预测的SNP的最小集合为5个,总测试错误率为1.59。

结论

本文描述了一种从牛群的SNP基因型中准确识别单倍型携带者的程序。观察到的错误分类很少,这表明这是一种在牛育种中潜在应用非常可靠的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a228/4318450/eac3aafe3ac6/12711_2015_94_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验