Giverso Chiara, Verani Marco, Ciarletta Pasquale
MOX, Politecnico di Milano, P.za Leonardo da Vinci, 32, 20133 Milan, Italy Fondazione CEN, P.za Leonardo da Vinci, 32, 20133 Milan, Italy.
MOX, Politecnico di Milano, P.za Leonardo da Vinci, 32, 20133 Milan, Italy.
J R Soc Interface. 2015 Mar 6;12(104):20141290. doi: 10.1098/rsif.2014.1290.
Self-organization in developing living organisms relies on the capability of cells to duplicate and perform a collective motion inside the surrounding environment. Chemical and mechanical interactions coordinate such a cooperative behaviour, driving the dynamical evolution of the macroscopic system. In this work, we perform an analytical and computational analysis to study pattern formation during the spreading of an initially circular bacterial colony on a Petri dish. The continuous mathematical model addresses the growth and the chemotactic migration of the living monolayer, together with the diffusion and consumption of nutrients in the agar. The governing equations contain four dimensionless parameters, accounting for the interplay among the chemotactic response, the bacteria-substrate interaction and the experimental geometry. The spreading colony is found to be always linearly unstable to perturbations of the interface, whereas branching instability arises in finite-element numerical simulations. The typical length scales of such fingers, which align in the radial direction and later undergo further branching, are controlled by the size parameters of the problem, whereas the emergence of branching is favoured if the diffusion is dominant on the chemotaxis. The model is able to predict the experimental morphologies, confirming that compact (resp. branched) patterns arise for fast (resp. slow) expanding colonies. Such results, while providing new insights into pattern selection in bacterial colonies, may finally have important applications for designing controlled patterns.
发育中的生物体的自组织依赖于细胞在周围环境中复制和进行集体运动的能力。化学和机械相互作用协调这种合作行为,驱动宏观系统的动态演化。在这项工作中,我们进行了分析和计算分析,以研究最初呈圆形的细菌菌落在培养皿上扩散过程中的图案形成。连续数学模型考虑了活细胞单层的生长和趋化迁移,以及琼脂中营养物质的扩散和消耗。控制方程包含四个无量纲参数,说明了趋化反应、细菌与底物相互作用以及实验几何形状之间的相互作用。发现扩展的菌落对界面扰动总是线性不稳定的,而分支不稳定性出现在有限元数值模拟中。这些手指状结构沿径向排列,随后进一步分支,其典型长度尺度由问题的尺寸参数控制,而如果扩散在趋化作用中占主导,则有利于分支的出现。该模型能够预测实验形态,证实了快速(分别为缓慢)扩展的菌落会出现紧凑(分别为分支)图案。这些结果在为细菌菌落中的图案选择提供新见解的同时,最终可能对设计可控图案具有重要应用。