Suppr超能文献

扩展细菌菌落中的分支不稳定性。

Branching instability in expanding bacterial colonies.

作者信息

Giverso Chiara, Verani Marco, Ciarletta Pasquale

机构信息

MOX, Politecnico di Milano, P.za Leonardo da Vinci, 32, 20133 Milan, Italy Fondazione CEN, P.za Leonardo da Vinci, 32, 20133 Milan, Italy.

MOX, Politecnico di Milano, P.za Leonardo da Vinci, 32, 20133 Milan, Italy.

出版信息

J R Soc Interface. 2015 Mar 6;12(104):20141290. doi: 10.1098/rsif.2014.1290.

Abstract

Self-organization in developing living organisms relies on the capability of cells to duplicate and perform a collective motion inside the surrounding environment. Chemical and mechanical interactions coordinate such a cooperative behaviour, driving the dynamical evolution of the macroscopic system. In this work, we perform an analytical and computational analysis to study pattern formation during the spreading of an initially circular bacterial colony on a Petri dish. The continuous mathematical model addresses the growth and the chemotactic migration of the living monolayer, together with the diffusion and consumption of nutrients in the agar. The governing equations contain four dimensionless parameters, accounting for the interplay among the chemotactic response, the bacteria-substrate interaction and the experimental geometry. The spreading colony is found to be always linearly unstable to perturbations of the interface, whereas branching instability arises in finite-element numerical simulations. The typical length scales of such fingers, which align in the radial direction and later undergo further branching, are controlled by the size parameters of the problem, whereas the emergence of branching is favoured if the diffusion is dominant on the chemotaxis. The model is able to predict the experimental morphologies, confirming that compact (resp. branched) patterns arise for fast (resp. slow) expanding colonies. Such results, while providing new insights into pattern selection in bacterial colonies, may finally have important applications for designing controlled patterns.

摘要

发育中的生物体的自组织依赖于细胞在周围环境中复制和进行集体运动的能力。化学和机械相互作用协调这种合作行为,驱动宏观系统的动态演化。在这项工作中,我们进行了分析和计算分析,以研究最初呈圆形的细菌菌落在培养皿上扩散过程中的图案形成。连续数学模型考虑了活细胞单层的生长和趋化迁移,以及琼脂中营养物质的扩散和消耗。控制方程包含四个无量纲参数,说明了趋化反应、细菌与底物相互作用以及实验几何形状之间的相互作用。发现扩展的菌落对界面扰动总是线性不稳定的,而分支不稳定性出现在有限元数值模拟中。这些手指状结构沿径向排列,随后进一步分支,其典型长度尺度由问题的尺寸参数控制,而如果扩散在趋化作用中占主导,则有利于分支的出现。该模型能够预测实验形态,证实了快速(分别为缓慢)扩展的菌落会出现紧凑(分别为分支)图案。这些结果在为细菌菌落中的图案选择提供新见解的同时,最终可能对设计可控图案具有重要应用。

相似文献

1
Branching instability in expanding bacterial colonies.
J R Soc Interface. 2015 Mar 6;12(104):20141290. doi: 10.1098/rsif.2014.1290.
2
Emerging morphologies in round bacterial colonies: comparing volumetric versus chemotactic expansion.
Biomech Model Mechanobiol. 2016 Jun;15(3):643-61. doi: 10.1007/s10237-015-0714-9. Epub 2015 Aug 22.
3
Mechanically driven branching of bacterial colonies.
J Biomech Eng. 2015 Jul;137(7). doi: 10.1115/1.4030176. Epub 2015 Jun 2.
4
Hydrodynamics of bacterial colonies: a model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031906. doi: 10.1103/PhysRevE.67.031906. Epub 2003 Mar 13.
5
Lubricating bacteria model for branching growth of bacterial colonies.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jun;59(6):7025-35. doi: 10.1103/physreve.59.7025.
6
Generic modelling of cooperative growth patterns in bacterial colonies.
Nature. 1994 Mar 3;368(6466):46-9. doi: 10.1038/368046a0.
7
Self-similar dynamics of bacterial chemotaxis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):062901. doi: 10.1103/PhysRevE.86.062901. Epub 2012 Dec 17.
8
Collective chemotaxis and segregation of active bacterial colonies.
Sci Rep. 2016 Feb 18;6:21269. doi: 10.1038/srep21269.
9
Flower-like patterns in multi-species bacterial colonies.
Elife. 2020 Jan 14;9:e48885. doi: 10.7554/eLife.48885.
10
Fractal morphogenesis by a bacterial cell population.
Crit Rev Microbiol. 1993;19(2):117-35. doi: 10.3109/10408419309113526.

引用本文的文献

1
Accidental and Regulated Cell Death in Yeast Colony Biofilms.
Bull Math Biol. 2025 Jul 17;87(8):110. doi: 10.1007/s11538-025-01470-w.
3
Swarming of : Through the lens of biophysics.
Biophys Rev (Melville). 2023 Sep;4(3):031305. doi: 10.1063/5.0128140. Epub 2023 Sep 28.
4
BMX: Biological modelling and interface exchange.
Sci Rep. 2023 Jul 28;13(1):12235. doi: 10.1038/s41598-023-39150-1.
5
Geometrical control of interface patterning underlies active matter invasion.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2219708120. doi: 10.1073/pnas.2219708120. Epub 2023 Jul 17.
6
Individual-Based Modeling of Spatial Dynamics of Chemotactic Microbial Populations.
ACS Synth Biol. 2022 Nov 18;11(11):3714-3723. doi: 10.1021/acssynbio.2c00322. Epub 2022 Nov 6.
7
Morphological instability and roughening of growing 3D bacterial colonies.
Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2208019119. doi: 10.1073/pnas.2208019119. Epub 2022 Oct 18.
8
Dependency of active pressure and equation of state on stiffness of wall.
Sci Rep. 2021 Nov 12;11(1):22204. doi: 10.1038/s41598-021-01605-8.
9
Programming cell growth into different cluster shapes using diffusible signals.
PLoS Comput Biol. 2021 Nov 8;17(11):e1009576. doi: 10.1371/journal.pcbi.1009576. eCollection 2021 Nov.
10
A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS).
Nat Protoc. 2021 Nov;16(11):5030-5082. doi: 10.1038/s41596-021-00593-3. Epub 2021 Oct 11.

本文引用的文献

1
Border forces and friction control epithelial closure dynamics.
Biophys J. 2014 Jan 7;106(1):65-73. doi: 10.1016/j.bpj.2013.11.015.
2
Mechanically driven growth of quasi-two-dimensional microbial colonies.
Phys Rev Lett. 2013 Oct 18;111(16):168101. doi: 10.1103/PhysRevLett.111.168101. Epub 2013 Oct 14.
3
Chemotaxis migration and morphogenesis of living colonies.
Eur Phys J E Soft Matter. 2013 Jun;36(6):64. doi: 10.1140/epje/i2013-13064-5. Epub 2013 Jun 27.
4
Effects of adhesion dynamics and substrate compliance on the shape and motility of crawling cells.
PLoS One. 2013 May 31;8(5):e64511. doi: 10.1371/journal.pone.0064511. Print 2013.
5
Mechanical guidance of cell migration: lessons from chemotaxis.
Curr Opin Cell Biol. 2013 Oct;25(5):543-9. doi: 10.1016/j.ceb.2013.04.010. Epub 2013 May 28.
6
Periodic reversals in Paenibacillus dendritiformis swarming.
J Bacteriol. 2013 Jun;195(12):2709-17. doi: 10.1128/JB.00080-13. Epub 2013 Apr 19.
7
Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15101-8. doi: 10.1073/pnas.1213353109. Epub 2012 Aug 29.
8
Selective sweeps in growing microbial colonies.
Phys Biol. 2012;9(2):026008. doi: 10.1088/1478-3975/9/2/026008. Epub 2012 Apr 4.
9
Free extracellular diffusion creates the Dpp morphogen gradient of the Drosophila wing disc.
Curr Biol. 2012 Apr 24;22(8):668-75. doi: 10.1016/j.cub.2012.02.065. Epub 2012 Mar 22.
10
Contour instabilities in early tumor growth models.
Phys Rev Lett. 2011 Apr 8;106(14):148101. doi: 10.1103/PhysRevLett.106.148101. Epub 2011 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验