Suppr超能文献

多孔弹性和粘弹性力学模型在高频和低频磁共振弹性成像中的适用性。

Suitability of poroelastic and viscoelastic mechanical models for high and low frequency MR elastography.

作者信息

McGarry M D J, Johnson C L, Sutton B P, Georgiadis J G, Van Houten E E W, Pattison A J, Weaver J B, Paulsen K D

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755.

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.

出版信息

Med Phys. 2015 Feb;42(2):947-57. doi: 10.1118/1.4905048.

Abstract

PURPOSE

Descriptions of the structure of brain tissue as a porous cellular matrix support application of a poroelastic (PE) mechanical model which includes both solid and fluid phases. However, the majority of brain magnetic resonance elastography (MRE) studies use a single phase viscoelastic (VE) model to describe brain tissue behavior, in part due to availability of relatively simple direct inversion strategies for mechanical property estimation. A notable exception is low frequency intrinsic actuation MRE, where PE mechanical properties are imaged with a nonlinear inversion algorithm.

METHODS

This paper investigates the effect of model choice at each end of the spectrum of in vivo human brain actuation frequencies. Repeat MRE examinations of the brains of healthy volunteers were used to compare image quality and repeatability for each inversion model for both 50 Hz externally produced motion and ≈1 Hz intrinsic motions. Additionally, realistic simulated MRE data were generated with both VE and PE finite element solvers to investigate the effect of inappropriate model choice for ideal VE and PE materials.

RESULTS

In vivo, MRE data revealed that VE inversions appear more representative of anatomical structure and quantitatively repeatable for 50 Hz induced motions, whereas PE inversion produces better results at 1 Hz. Reasonable VE approximations of PE materials can be derived by equating the equivalent wave velocities for the two models, provided that the timescale of fluid equilibration is not similar to the period of actuation. An approximation of the equilibration time for human brain reveals that this condition is violated at 1 Hz but not at 50 Hz. Additionally, simulation experiments when using the "wrong" model for the inversion demonstrated reasonable shear modulus reconstructions at 50 Hz, whereas cross-model inversions at 1 Hz were poor quality. Attenuation parameters were sensitive to changes in the forward model at both frequencies, however, no spatial information was recovered because the mechanisms of VE and PE attenuation are different.

CONCLUSIONS

VE inversions are simpler with fewer unknown properties and may be sufficient to capture the mechanical behavior of PE brain tissue at higher actuation frequencies. However, accurate modeling of the fluid phase is required to produce useful mechanical property images at the lower frequencies of intrinsic brain motions.

摘要

目的

将脑组织的结构描述为多孔细胞基质,这支持了包含固相和液相的多孔弹性(PE)力学模型的应用。然而,大多数脑磁共振弹性成像(MRE)研究使用单相粘弹性(VE)模型来描述脑组织的行为,部分原因是存在相对简单的直接反演策略用于力学性能估计。一个显著的例外是低频固有驱动MRE,其中PE力学性能通过非线性反演算法成像。

方法

本文研究了体内人脑驱动频率范围内两端模型选择的影响。对健康志愿者的大脑进行重复MRE检查,以比较50Hz外部产生的运动和≈1Hz固有运动时每个反演模型的图像质量和可重复性。此外,使用VE和PE有限元求解器生成逼真的模拟MRE数据,以研究对理想VE和PE材料选择不恰当模型的影响。

结果

在体内,MRE数据显示,对于50Hz诱发运动,VE反演似乎更能代表解剖结构且在定量上具有可重复性,而PE反演在1Hz时产生更好的结果。通过使两个模型的等效波速相等,可以得出PE材料合理的VE近似值,前提是流体平衡的时间尺度与驱动周期不相似。对人脑平衡时间的近似表明,在1Hz时该条件不满足,但在50Hz时满足。此外,反演时使用“错误”模型的模拟实验表明,在50Hz时剪切模量重建合理,而在1Hz时跨模型反演质量较差。在两个频率下,衰减参数对正向模型的变化都很敏感,然而,由于VE和PE衰减的机制不同,没有恢复空间信息。

结论

VE反演更简单,未知属性更少,在较高驱动频率下可能足以捕捉PE脑组织的力学行为。然而,在较低的脑固有运动频率下,需要对流体相进行精确建模才能生成有用的力学性能图像。

相似文献

2
Uniqueness of poroelastic and viscoelastic nonlinear inversion MR elastography at low frequencies.
Phys Med Biol. 2019 Mar 27;64(7):075006. doi: 10.1088/1361-6560/ab0a7d.
3
Nonlinear Inversion MR Elastography With Low-Frequency Actuation.
IEEE Trans Med Imaging. 2020 May;39(5):1775-1784. doi: 10.1109/TMI.2019.2958212. Epub 2019 Dec 6.
4
Estimating the viscoelastic properties of the human brain at 7 T MRI using intrinsic MRE and nonlinear inversion.
Hum Brain Mapp. 2023 Dec 15;44(18):6575-6591. doi: 10.1002/hbm.26524. Epub 2023 Nov 1.
5
Modeling of soft poroelastic tissue in time-harmonic MR elastography.
IEEE Trans Biomed Eng. 2009 Mar;56(3):598-608. doi: 10.1109/TBME.2008.2009928. Epub 2008 Dec 2.
7
Brain mechanical property measurement using MRE with intrinsic activation.
Phys Med Biol. 2012 Nov 21;57(22):7275-87. doi: 10.1088/0031-9155/57/22/7275. Epub 2012 Oct 18.
8
Phantom evaluations of low frequency MR elastography.
Phys Med Biol. 2019 Mar 12;64(6):065010. doi: 10.1088/1361-6560/ab0290.
9
In vivo wideband multifrequency MR elastography of the human brain and liver.
Magn Reson Med. 2016 Oct;76(4):1116-26. doi: 10.1002/mrm.26006. Epub 2015 Oct 20.
10
Heterogeneous Multifrequency Direct Inversion (HMDI) for magnetic resonance elastography with application to a clinical brain exam.
Med Image Anal. 2018 May;46:180-188. doi: 10.1016/j.media.2018.03.003. Epub 2018 Mar 17.

引用本文的文献

1
Fast, motion-robust MR elastography with distributed, generalized encoding.
Magn Reson Med. 2025 Jul 10. doi: 10.1002/mrm.30631.
6
Magnetic resonance elastography resolving all gross anatomical segments of the kidney during controlled hydration.
Front Physiol. 2024 Feb 7;15:1327407. doi: 10.3389/fphys.2024.1327407. eCollection 2024.
7
Estimating the viscoelastic properties of the human brain at 7 T MRI using intrinsic MRE and nonlinear inversion.
Hum Brain Mapp. 2023 Dec 15;44(18):6575-6591. doi: 10.1002/hbm.26524. Epub 2023 Nov 1.
8
Imaging the subcellular viscoelastic properties of mouse oocytes.
Proc Natl Acad Sci U S A. 2023 May 23;120(21):e2213836120. doi: 10.1073/pnas.2213836120. Epub 2023 May 15.
10
Valsalva Maneuver Decreases Liver and Spleen Stiffness Measured by Time-Harmonic Ultrasound Elastography.
Front Bioeng Biotechnol. 2022 May 26;10:886363. doi: 10.3389/fbioe.2022.886363. eCollection 2022.

本文引用的文献

1
Spatially-resolved hydraulic conductivity estimation via poroelastic magnetic resonance elastography.
IEEE Trans Med Imaging. 2014 Jun;33(6):1373-80. doi: 10.1109/TMI.2014.2311456. Epub 2014 Mar 18.
3
Towards an elastographic atlas of brain anatomy.
PLoS One. 2013 Aug 14;8(8):e71807. doi: 10.1371/journal.pone.0071807. eCollection 2013.
4
Neuroscience. Garbage truck of the brain.
Science. 2013 Jun 28;340(6140):1529-30. doi: 10.1126/science.1240514.
5
Including spatial information in nonlinear inversion MR elastography using soft prior regularization.
IEEE Trans Med Imaging. 2013 Oct;32(10):1901-9. doi: 10.1109/TMI.2013.2268978. Epub 2013 Jun 17.
6
Local mechanical properties of white matter structures in the human brain.
Neuroimage. 2013 Oct 1;79:145-52. doi: 10.1016/j.neuroimage.2013.04.089. Epub 2013 May 1.
7
Brain mechanical property measurement using MRE with intrinsic activation.
Phys Med Biol. 2012 Nov 21;57(22):7275-87. doi: 10.1088/0031-9155/57/22/7275. Epub 2012 Oct 18.
8
Multiresolution MR elastography using nonlinear inversion.
Med Phys. 2012 Oct;39(10):6388-96. doi: 10.1118/1.4754649.
9
Magnetic resonance elastography of the brain using multishot spiral readouts with self-navigated motion correction.
Magn Reson Med. 2013 Aug;70(2):404-12. doi: 10.1002/mrm.24473. Epub 2012 Sep 21.
10
Decreased brain stiffness in Alzheimer's disease determined by magnetic resonance elastography.
J Magn Reson Imaging. 2011 Sep;34(3):494-8. doi: 10.1002/jmri.22707. Epub 2011 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验