Suppr超能文献

大肠杆菌RNA焦磷酸水解酶RppH的特异性与进化保守性

Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH.

作者信息

Foley Patricia L, Hsieh Ping-kun, Luciano Daniel J, Belasco Joel G

机构信息

From the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016.

From the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016

出版信息

J Biol Chem. 2015 Apr 10;290(15):9478-86. doi: 10.1074/jbc.M114.634659. Epub 2015 Feb 5.

Abstract

Bacterial RNA degradation often begins with conversion of the 5'-terminal triphosphate to a monophosphate by the RNA pyrophosphohydrolase RppH, an event that triggers rapid ribonucleolytic attack. Besides its role as the master regulator of 5'-end-dependent mRNA decay, RppH is important for the ability of pathogenic bacteria to invade host cells, yet little is known about how it chooses its targets. Here, we show that Escherichia coli RppH (EcRppH) requires at least two unpaired nucleotides at the RNA 5' end and prefers three or more such nucleotides. It can tolerate any nucleotide at the first three positions but has a modest preference for A at the 5' terminus and either a G or A at the second position. Mutational analysis has identified EcRppH residues crucial for substrate recognition or catalysis. The promiscuity of EcRppH differentiates it from its Bacillus subtilis counterpart, which has a strict RNA sequence requirement. EcRppH orthologs likely to share its relaxed sequence specificity are widespread in all classes of Proteobacteria, except Deltaproteobacteria, and in flowering plants. By contrast, the phylogenetic range of recognizable B. subtilis RppH orthologs appears to be restricted to the order Bacillales. These findings help to explain the selective influence of RppH on bacterial mRNA decay and show that RppH-dependent degradation has diversified significantly during the course of evolution.

摘要

细菌RNA降解通常始于RNA焦磷酸水解酶RppH将5'-末端三磷酸转化为单磷酸,这一事件会引发快速的核糖核酸酶攻击。除了作为5'-末端依赖性mRNA衰变的主要调节因子外,RppH对病原菌侵入宿主细胞的能力也很重要,但对于它如何选择靶标却知之甚少。在这里,我们表明大肠杆菌RppH(EcRppH)在RNA 5'末端需要至少两个未配对的核苷酸,并且更喜欢三个或更多这样的核苷酸。它可以容忍前三个位置的任何核苷酸,但对5'末端的A以及第二个位置的G或A有一定偏好。突变分析已经确定了EcRppH中对底物识别或催化至关重要的残基。EcRppH的混杂性使其与其枯草芽孢杆菌对应物不同,后者对RNA序列有严格要求。可能具有与其宽松序列特异性相同的EcRppH直系同源物在除δ变形菌纲之外的所有变形菌纲类别以及开花植物中广泛存在。相比之下,可识别的枯草芽孢杆菌RppH直系同源物的系统发育范围似乎仅限于芽孢杆菌目。这些发现有助于解释RppH对细菌mRNA衰变的选择性影响,并表明在进化过程中,依赖RppH的降解已经显著多样化。

相似文献

1
Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH.
J Biol Chem. 2015 Apr 10;290(15):9478-86. doi: 10.1074/jbc.M114.634659. Epub 2015 Feb 5.
3
The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal.
Nature. 2008 Jan 17;451(7176):355-8. doi: 10.1038/nature06475.
4
Importance of a diphosphorylated intermediate for RppH-dependent RNA degradation.
RNA Biol. 2018;15(6):703-706. doi: 10.1080/15476286.2018.1460995. Epub 2018 May 29.
5
A distinct RNA recognition mechanism governs Np decapping by RppH.
Proc Natl Acad Sci U S A. 2022 Feb 8;119(6). doi: 10.1073/pnas.2117318119.
6
A Novel RNA Phosphorylation State Enables 5' End-Dependent Degradation in Escherichia coli.
Mol Cell. 2017 Jul 6;67(1):44-54.e6. doi: 10.1016/j.molcel.2017.05.035. Epub 2017 Jun 29.
7
Multifaceted impact of a nucleoside monophosphate kinase on 5'-end-dependent mRNA degradation in bacteria.
Nucleic Acids Res. 2021 Nov 8;49(19):11038-11049. doi: 10.1093/nar/gkab884.
8
Identification of the RNA Pyrophosphohydrolase RppH of Helicobacter pylori and Global Analysis of Its RNA Targets.
J Biol Chem. 2017 Feb 3;292(5):1934-1950. doi: 10.1074/jbc.M116.761171. Epub 2016 Dec 14.
9
Differential control of the rate of 5'-end-dependent mRNA degradation in Escherichia coli.
J Bacteriol. 2012 Nov;194(22):6233-9. doi: 10.1128/JB.01223-12. Epub 2012 Sep 14.
10
Effect of the RNA pyrophosphohydrolase RppH on envelope integrity in Escherichia coli.
FEMS Microbiol Lett. 2017 Aug 15;364(15). doi: 10.1093/femsle/fnx152.

引用本文的文献

1
5' terminal nucleotide determines the immunogenicity of IVT RNAs.
Nucleic Acids Res. 2025 Jan 24;53(3). doi: 10.1093/nar/gkae1252.
2
Selective RNA Processing and Stabilization are Multi-Layer and Stoichiometric Regulators of Gene Expression in Escherichia coli.
Adv Sci (Weinh). 2023 Nov;10(33):e2301459. doi: 10.1002/advs.202301459. Epub 2023 Oct 16.
3
Premature termination of transcription is shaped by Rho and translated uORFS in .
iScience. 2023 Mar 22;26(4):106465. doi: 10.1016/j.isci.2023.106465. eCollection 2023 Apr 21.
4
A distinct RNA recognition mechanism governs Np decapping by RppH.
Proc Natl Acad Sci U S A. 2022 Feb 8;119(6). doi: 10.1073/pnas.2117318119.
5
Brucella melitensis invA gene (BME_RS01060) transcription is promoted under acidic stress conditions.
Arch Microbiol. 2021 Dec 22;204(1):52. doi: 10.1007/s00203-021-02664-1.
6
Multifaceted impact of a nucleoside monophosphate kinase on 5'-end-dependent mRNA degradation in bacteria.
Nucleic Acids Res. 2021 Nov 8;49(19):11038-11049. doi: 10.1093/nar/gkab884.
7
Regulation of mRNA decay in .
Crit Rev Biochem Mol Biol. 2022 Feb;57(1):48-72. doi: 10.1080/10409238.2021.1968784. Epub 2021 Sep 21.
8
Quantitative Control for Stoichiometric Protein Synthesis.
Annu Rev Microbiol. 2021 Oct 8;75:243-267. doi: 10.1146/annurev-micro-041921-012646. Epub 2021 Aug 3.
9
The OPR Protein MTHI1 Controls the Expression of Two Different Subunits of ATP Synthase CFo in .
Plant Cell. 2020 Apr;32(4):1179-1203. doi: 10.1105/tpc.19.00770. Epub 2020 Jan 27.
10
Principles of RNA and nucleotide discrimination by the RNA processing enzyme RppH.
Nucleic Acids Res. 2020 Apr 17;48(7):3776-3788. doi: 10.1093/nar/gkaa024.

本文引用的文献

2
Initiation of mRNA decay in bacteria.
Cell Mol Life Sci. 2014 May;71(10):1799-828. doi: 10.1007/s00018-013-1472-4. Epub 2013 Sep 25.
3
Specificity of RppH-dependent RNA degradation in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):8864-9. doi: 10.1073/pnas.1222670110. Epub 2013 Apr 22.
4
Bacillus subtilis RNA deprotection enzyme RppH recognizes guanosine in the second position of its substrates.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):8858-63. doi: 10.1073/pnas.1221510110. Epub 2013 Apr 22.
5
Influence of translation on RppH-dependent mRNA degradation in Escherichia coli.
Mol Microbiol. 2012 Dec;86(5):1063-72. doi: 10.1111/mmi.12040. Epub 2012 Oct 9.
6
Differential control of the rate of 5'-end-dependent mRNA degradation in Escherichia coli.
J Bacteriol. 2012 Nov;194(22):6233-9. doi: 10.1128/JB.01223-12. Epub 2012 Sep 14.
7
Mechanism of H. pylori intracellular entry: an in vitro study.
Front Cell Infect Microbiol. 2012 Mar 1;2:13. doi: 10.3389/fcimb.2012.00013. eCollection 2012.
8
An RNA pyrophosphohydrolase triggers 5'-exonucleolytic degradation of mRNA in Bacillus subtilis.
Mol Cell. 2011 Sep 16;43(6):940-9. doi: 10.1016/j.molcel.2011.07.023.
10
The group A Streptococcus small regulatory RNA FasX enhances streptokinase activity by increasing the stability of the ska mRNA transcript.
Mol Microbiol. 2010 Dec;78(6):1332-47. doi: 10.1111/j.1365-2958.2010.07427.x. Epub 2010 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验