Suppr超能文献

临床文本数据在表型全基因组关联研究(PheWAS)中的应用。

Application of clinical text data for phenome-wide association studies (PheWASs).

机构信息

Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI 54449, USA and Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, WI 54449, USA.

出版信息

Bioinformatics. 2015 Jun 15;31(12):1981-7. doi: 10.1093/bioinformatics/btv076. Epub 2015 Feb 4.

Abstract

MOTIVATION

Genome-wide association studies (GWASs) are effective for describing genetic complexities of common diseases. Phenome-wide association studies (PheWASs) offer an alternative and complementary approach to GWAS using data embedded in the electronic health record (EHR) to define the phenome. International Classification of Disease version 9 (ICD9) codes are used frequently to define the phenome, but using ICD9 codes alone misses other clinically relevant information from the EHR that can be used for PheWAS analyses and discovery.

RESULTS

As an alternative to ICD9 coding, a text-based phenome was defined by 23 384 clinically relevant terms extracted from Marshfield Clinic's EHR. Five single nucleotide polymorphisms (SNPs) with known phenotypic associations were genotyped in 4235 individuals and associated across the text-based phenome. All five SNPs genotyped were associated with expected terms (P<0.02), most at or near the top of their respective PheWAS ranking. Raw association results indicate that text data performed equivalently to ICD9 coding and demonstrate the utility of information beyond ICD9 coding for application in PheWAS.

摘要

动机

全基因组关联研究(GWAS)对于描述常见疾病的遗传复杂性非常有效。表型全基因组关联研究(PheWAS)提供了一种替代和补充的方法,利用电子健康记录(EHR)中嵌入的数据来定义表型。国际疾病分类第 9 版(ICD9)代码常用于定义表型,但仅使用 ICD9 代码会错过 EHR 中其他与临床相关的信息,这些信息可用于 PheWAS 分析和发现。

结果

作为 ICD9 编码的替代方法,通过从 Marshfield 诊所的 EHR 中提取的 23384 个临床相关术语定义了基于文本的表型。在 4235 个人中对 5 个具有已知表型关联的单核苷酸多态性(SNP)进行了基因分型,并在基于文本的表型中进行了关联。对所有 5 个进行基因分型的 SNP 都与预期的术语相关(P<0.02),大多数 SNP 位于或接近各自 PheWAS 排名的顶端。原始关联结果表明,文本数据与 ICD9 编码等效,并证明了超越 ICD9 编码的信息对于在 PheWAS 中的应用的实用性。

相似文献

6
A PheWAS approach in studying HLA-DRB1*1501.研究 HLA-DRB1*1501 中的 PheWAS 方法。
Genes Immun. 2013 Apr;14(3):187-91. doi: 10.1038/gene.2013.2. Epub 2013 Feb 7.
7
Phenome-Wide Association Studies as a Tool to Advance Precision Medicine.全表型组关联研究作为推进精准医学的工具
Annu Rev Genomics Hum Genet. 2016 Aug 31;17:353-73. doi: 10.1146/annurev-genom-090314-024956. Epub 2016 May 4.

引用本文的文献

3
Estimating the efficacy of pharmacogenomics over a lifetime.评估药物基因组学在人一生中的疗效。
Front Med (Lausanne). 2023 Oct 31;10:1006743. doi: 10.3389/fmed.2023.1006743. eCollection 2023.
5
Defining Phenotypes from Clinical Data to Drive Genomic Research.从临床数据定义表型以推动基因组研究。
Annu Rev Biomed Data Sci. 2018 Jul;1:69-92. doi: 10.1146/annurev-biodatasci-080917-013335. Epub 2018 Apr 25.
10
Genomic and Phenomic Research in the 21st Century.二十一世纪的基因组学与表型组学研究
Trends Genet. 2019 Jan;35(1):29-41. doi: 10.1016/j.tig.2018.09.007. Epub 2018 Oct 17.

本文引用的文献

7
Automated detection of off-label drug use.非适应证用药的自动检测。
PLoS One. 2014 Feb 19;9(2):e89324. doi: 10.1371/journal.pone.0089324. eCollection 2014.
10
Mining clinical text for signals of adverse drug-drug interactions.从临床文本中挖掘药物-药物不良相互作用信号。
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):353-62. doi: 10.1136/amiajnl-2013-001612. Epub 2013 Oct 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验