Suppr超能文献

从临床文本中挖掘药物-药物不良相互作用信号。

Mining clinical text for signals of adverse drug-drug interactions.

机构信息

Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California, USA.

出版信息

J Am Med Inform Assoc. 2014 Mar-Apr;21(2):353-62. doi: 10.1136/amiajnl-2013-001612. Epub 2013 Oct 24.

Abstract

BACKGROUND AND OBJECTIVE

Electronic health records (EHRs) are increasingly being used to complement the FDA Adverse Event Reporting System (FAERS) and to enable active pharmacovigilance. Over 30% of all adverse drug reactions are caused by drug-drug interactions (DDIs) and result in significant morbidity every year, making their early identification vital. We present an approach for identifying DDI signals directly from the textual portion of EHRs.

METHODS

We recognize mentions of drug and event concepts from over 50 million clinical notes from two sites to create a timeline of concept mentions for each patient. We then use adjusted disproportionality ratios to identify significant drug-drug-event associations among 1165 drugs and 14 adverse events. To validate our results, we evaluate our performance on a gold standard of 1698 DDIs curated from existing knowledge bases, as well as with signaling DDI associations directly from FAERS using established methods.

RESULTS

Our method achieves good performance, as measured by our gold standard (area under the receiver operator characteristic (ROC) curve >80%), on two independent EHR datasets and the performance is comparable to that of signaling DDIs from FAERS. We demonstrate the utility of our method for early detection of DDIs and for identifying alternatives for risky drug combinations. Finally, we publish a first of its kind database of population event rates among patients on drug combinations based on an EHR corpus.

CONCLUSIONS

It is feasible to identify DDI signals and estimate the rate of adverse events among patients on drug combinations, directly from clinical text; this could have utility in prioritizing drug interaction surveillance as well as in clinical decision support.

摘要

背景和目的

电子健康记录(EHRs)越来越多地被用于补充 FDA 不良事件报告系统(FAERS),并实现主动药物警戒。超过 30%的药物不良反应是由药物相互作用(DDI)引起的,每年都会导致严重的发病率,因此早期识别至关重要。我们提出了一种直接从 EHR 的文本部分识别 DDI 信号的方法。

方法

我们从两个地点的超过 5000 万份临床记录中识别药物和事件概念的提及,为每个患者创建概念提及的时间线。然后,我们使用调整后的不相称比来识别 1165 种药物和 14 种不良事件之间的显著药物-药物-事件关联。为了验证我们的结果,我们使用从现有知识库中精心挑选的 1698 个 DDI 的黄金标准以及使用 FAERS 中建立的方法直接从信号 DDI 关联来评估我们在性能。

结果

我们的方法在两个独立的 EHR 数据集上实现了良好的性能,表现为我们的黄金标准(接收器操作特征曲线下的面积(ROC 曲线)>80%),性能可与 FAERS 中信号 DDI 的性能相媲美。我们证明了我们的方法在早期检测 DDI 和识别风险药物组合的替代方案方面的实用性。最后,我们根据 EHR 语料库发布了第一个基于人群的药物组合患者不良事件发生率数据库。

结论

直接从临床文本中识别 DDI 信号并估计药物组合患者的不良事件发生率是可行的;这在优先监测药物相互作用以及临床决策支持方面可能具有实用性。

相似文献

1
Mining clinical text for signals of adverse drug-drug interactions.从临床文本中挖掘药物-药物不良相互作用信号。
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):353-62. doi: 10.1136/amiajnl-2013-001612. Epub 2013 Oct 24.
7
Mining Directional Drug Interaction Effects on Myopathy Using the FAERS Database.利用 FAERS 数据库挖掘肌病的药物相互作用方向效应。
IEEE J Biomed Health Inform. 2019 Sep;23(5):2156-2163. doi: 10.1109/JBHI.2018.2874533. Epub 2018 Oct 8.

引用本文的文献

本文引用的文献

1
Pharmacovigilance using clinical notes.药物警戒利用临床记录。
Clin Pharmacol Ther. 2013 Jun;93(6):547-55. doi: 10.1038/clpt.2013.47. Epub 2013 Mar 4.
9
Drug-drug interaction through molecular structure similarity analysis.基于分子结构相似性分析的药物-药物相互作用。
J Am Med Inform Assoc. 2012 Nov-Dec;19(6):1066-74. doi: 10.1136/amiajnl-2012-000935. Epub 2012 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验