Suppr超能文献

小岩蛙(Staurois parvus,蛙科)趾垫的形态学研究及其与新型仿生可逆粘合剂开发的相关性。

Morphological studies of the toe pads of the rock frog, Staurois parvus (family: Ranidae) and their relevance to the development of new biomimetically inspired reversible adhesives.

作者信息

Drotlef Dirk M, Appel Esther, Peisker Henrik, Dening Kirstin, Del Campo Aránzazu, Gorb Stanislav N, Barnes W Jon P

机构信息

Max Planck Institut für Polymerforschung , Mainz , Germany.

Functional Morphology and Biomechanics , University of Kiel , Kiel , Germany.

出版信息

Interface Focus. 2015 Feb 6;5(1):20140036. doi: 10.1098/rsfs.2014.0036.

Abstract

The morphology of the toe epithelium of the rock frog, Staurois parvus (Family Ranidae), was investigated using a variety of microscopical techniques. The toe pad epithelium is stratified (four to five cell layers), the apical parts of the cells of the outermost layer being separated by fluid-filled channels. The surface of these cells is covered by a dense array of nanopillars, which also cover the surface of subarticular tubercles and unspecialized ventral epithelium of the toes, but not the dorsal epithelium. The apical portions of the outer two layers contain fibrils that originate from the nanopillars and are oriented approximately normal to the surface. This structure is similar to the pad structure of tree frogs of the families Hylidae and Rhacophoridae, indicating evolutionary convergence and a common evolutionary design for reversible attachment in climbing frogs. The main adaptation to the torrent habitat seems to be the straightness of the channels crossing the toe pad, which will assist in drainage of excess water. The presence of nanopillar arrays on all ventral surfaces of the toes resembles that on clingfish suckers and may be a specific adaptation for underwater adhesion and friction. The relevance of these findings to the development of new biomimetically inspired reversible adhesives is discussed.

摘要

利用多种显微镜技术对小型岩蛙(姬蛙科)趾上皮的形态进行了研究。趾垫上皮为复层(四至五层细胞),最外层细胞的顶端部分被充满液体的通道分隔。这些细胞的表面覆盖着密集排列的纳米柱,纳米柱也覆盖了关节下瘤和趾部未特化的腹侧上皮的表面,但不覆盖背侧上皮。最外两层的顶端部分含有源自纳米柱且大致垂直于表面排列的纤维。这种结构类似于雨蛙科和树蛙科树蛙的趾垫结构,表明在攀援蛙中存在趋同进化以及用于可逆附着的共同进化设计。对急流栖息地的主要适应性似乎是穿过趾垫的通道的笔直程度,这将有助于排出多余的水。趾部所有腹侧表面上纳米柱阵列的存在类似于喉盘鱼吸盘上的纳米柱阵列,可能是对水下粘附和摩擦的一种特殊适应。讨论了这些发现与新型仿生可逆粘合剂开发的相关性。

相似文献

2
Comparative Cryo-SEM and AFM studies of hylid and rhacophorid tree frog toe pads.
J Morphol. 2013 Dec;274(12):1384-96. doi: 10.1002/jmor.20186. Epub 2013 Sep 3.
3
Tree frog adhesion biomimetics: opportunities for the development of new, smart adhesives that adhere under wet conditions.
Philos Trans A Math Phys Eng Sci. 2019 Jul 29;377(2150):20190131. doi: 10.1098/rsta.2019.0131. Epub 2019 Jun 10.
4
Sticking under wet conditions: the remarkable attachment abilities of the torrent frog, Staurois guttatus.
PLoS One. 2013 Sep 25;8(9):e73810. doi: 10.1371/journal.pone.0073810. eCollection 2013.
5
The use of clamping grips and friction pads by tree frogs for climbing curved surfaces.
Proc Biol Sci. 2017 Feb 22;284(1849). doi: 10.1098/rspb.2016.2867.
7
Wet but not slippery: Boundary friction in tree frog adhesive toe pads.
J R Soc Interface. 2006 Oct 22;3(10):689-97. doi: 10.1098/rsif.2006.0135.
8
Tree frog-inspired nanopillar arrays for enhancement of adhesion and friction.
Biointerphases. 2021 Mar 4;16(2):021001. doi: 10.1116/6.0000747.
9
Force-transmitting structures in the digital pads of the tree frog Hyla cinerea: a functional interpretation.
J Anat. 2018 Oct;233(4):478-495. doi: 10.1111/joa.12860. Epub 2018 Aug 19.
10
Hybrid Surface Patterns Mimicking the Design of the Adhesive Toe Pad of Tree Frog.
ACS Nano. 2017 Oct 24;11(10):9711-9719. doi: 10.1021/acsnano.7b04994. Epub 2017 Sep 8.

引用本文的文献

1
Actin-templated Structures: Nature's Way to Hierarchical Surface Patterns (Gecko's Setae as Case Study).
Adv Sci (Weinh). 2024 Mar;11(10):e2303816. doi: 10.1002/advs.202303816. Epub 2023 Dec 25.
2
Controllable adhesive mechanisms via the internal fibers in soft footpads of honeybees.
Mater Today Bio. 2023 Jun 16;21:100704. doi: 10.1016/j.mtbio.2023.100704. eCollection 2023 Aug.
3
Gradient Micropillar Array Inspired by Tree Frog for Robust Adhesion on Dry and Wet Surfaces.
Biomimetics (Basel). 2022 Nov 21;7(4):209. doi: 10.3390/biomimetics7040209.
4
Micro-Nano Hierarchical Structure Enhanced Strong Wet Friction Surface Inspired by Tree Frogs.
Adv Sci (Weinh). 2020 Aug 9;7(20):2001125. doi: 10.1002/advs.202001125. eCollection 2020 Oct.
5
An adhesive locomotion model for the rock-climbing fish, Beaufortia kweichowensis.
Sci Rep. 2019 Nov 12;9(1):16571. doi: 10.1038/s41598-019-53027-2.
6
Tree frog adhesion biomimetics: opportunities for the development of new, smart adhesives that adhere under wet conditions.
Philos Trans A Math Phys Eng Sci. 2019 Jul 29;377(2150):20190131. doi: 10.1098/rsta.2019.0131. Epub 2019 Jun 10.
7
Effective Elastic Modulus of Structured Adhesives: From Biology to Biomimetics.
Biomimetics (Basel). 2017 Jun 29;2(3):10. doi: 10.3390/biomimetics2030010.
8
Pillar versus dimple patterned surfaces for wettability and adhesion with varying scales.
J R Soc Interface. 2018 Nov 14;15(148):20180681. doi: 10.1098/rsif.2018.0681.
9
Tree frog attachment: mechanisms, challenges, and perspectives.
Front Zool. 2018 Aug 23;15:32. doi: 10.1186/s12983-018-0273-x. eCollection 2018.
10
Force-transmitting structures in the digital pads of the tree frog Hyla cinerea: a functional interpretation.
J Anat. 2018 Oct;233(4):478-495. doi: 10.1111/joa.12860. Epub 2018 Aug 19.

本文引用的文献

1
Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive.
J R Soc Interface. 2014 Jan 22;11(93):20131089. doi: 10.1098/rsif.2013.1089. Print 2014 Apr 6.
2
Sticking under wet conditions: the remarkable attachment abilities of the torrent frog, Staurois guttatus.
PLoS One. 2013 Sep 25;8(9):e73810. doi: 10.1371/journal.pone.0073810. eCollection 2013.
3
Comparative Cryo-SEM and AFM studies of hylid and rhacophorid tree frog toe pads.
J Morphol. 2013 Dec;274(12):1384-96. doi: 10.1002/jmor.20186. Epub 2013 Sep 3.
4
Grain boundaries and coincidence site lattices in the corneal nanonipple structure of the Mourning Cloak butterfly.
Beilstein J Nanotechnol. 2013 May 2;4:292-9. doi: 10.3762/bjnano.4.32. Print 2013.
5
Stick tight: suction adhesion on irregular surfaces in the northern clingfish.
Biol Lett. 2013 May 1;9(3):20130234. doi: 10.1098/rsbl.2013.0234. Print 2013 Jun 23.
6
Subdigital and subcaudal microornamentation in Chamaeleonidae--a comparative study.
J Morphol. 2013 Jun;274(6):713-23. doi: 10.1002/jmor.20137. Epub 2013 Mar 18.
7
Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces.
J R Soc Interface. 2013 Jan 16;10(80):20120838. doi: 10.1098/rsif.2012.0838. Print 2013 Mar 6.
9
Measurement and scaling of hydrodynamic interactions in the presence of draining channels.
Langmuir. 2012 Oct 16;28(41):14703-12. doi: 10.1021/la303508x. Epub 2012 Oct 5.
10
In vivo dynamics of the internal fibrous structure in smooth adhesive pads of insects.
Acta Biomater. 2012 Jul;8(7):2730-6. doi: 10.1016/j.actbio.2012.04.008. Epub 2012 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验