Max-Planck-Institut für Polymerforschung , Ackermannweg 10, 55128 Mainz, Germany.
Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC) , Juan de la Cierva 3, 28006 Madrid, Spain.
ACS Nano. 2017 Oct 24;11(10):9711-9719. doi: 10.1021/acsnano.7b04994. Epub 2017 Sep 8.
Biological materials achieve directional reinforcement with oriented assemblies of anisotropic building blocks. One such example is the nanocomposite structure of keratinized epithelium on the toe pad of tree frogs, in which hexagonal arrays of (soft) epithelial cells are crossed by densely packed and oriented (hard) keratin nanofibrils. Here, a method is established to fabricate arrays of tree-frog-inspired composite micropatterns composed of polydimethylsiloxane (PDMS) micropillars embedded with polystyrene (PS) nanopillars. Adhesive and frictional studies of these synthetic materials reveal a benefit of the hierarchical and anisotropic design for both adhesion and friction, in particular, at high matrix-fiber interfacial strengths. The presence of PS nanopillars alters the stress distribution at the contact interface of micropillars and therefore enhances the adhesion and friction of the composite micropattern. The results suggest a design principle for bioinspired structural adhesives, especially for wet environments.
生物材料通过各向异性构建块的定向组装来实现定向增强。例如,树蛙脚趾垫上的角蛋白上皮的纳米复合材料结构就是一个很好的例子,其中(软)上皮细胞的六边形阵列被密集排列和定向(硬)角蛋白纳米纤维穿过。在这里,建立了一种方法来制造由聚二甲基硅氧烷 (PDMS) 微柱体嵌入聚苯乙烯 (PS) 纳米柱体组成的树蛙启发型复合微图案阵列。对这些合成材料的粘附和摩擦研究表明,分层和各向异性设计对粘附和摩擦都有好处,特别是在基质-纤维界面强度较高的情况下。PS 纳米柱的存在改变了微柱体接触界面处的应力分布,从而提高了复合材料微图案的粘附性和摩擦力。研究结果为仿生结构胶粘剂的设计提供了一个原则,特别是对于潮湿环境。