Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA.
Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA.
Biochim Biophys Acta Mol Cell Res. 2020 Oct;1867(10):118786. doi: 10.1016/j.bbamcr.2020.118786. Epub 2020 Jun 26.
Protein interactions between voltage-gated sodium (Nav) channels and accessory proteins play an essential role in neuronal firing and plasticity. However, a surprisingly limited number of kinases have been identified as regulators of these molecular complexes. We hypothesized that numerous as-of-yet unidentified kinases indirectly regulate the Nav channel via modulation of the intracellular fibroblast growth factor 14 (FGF14), an accessory protein with numerous unexplored phosphomotifs and required for channel function in neurons.
Here we present results from an in-cell high-throughput screening (HTS) against the FGF14: Nav1.6 complex using >3000 diverse compounds targeting an extensive range of signaling pathways. Regulation by top kinase targets was then explored using in vitro phosphorylation, biophysics, mass-spectrometry and patch-clamp electrophysiology.
Compounds targeting Janus kinase 2 (JAK2) were over-represented among HTS hits. Phosphomotif scans supported by mass spectrometry revealed FGF14, a site previously shown to mediate both FGF14 homodimerization and interactions with Nav1.6, as a JAK2 phosphorylation site. Following inhibition of JAK2, FGF14 homodimerization increased in a manner directly inverse to FGF14:Nav1.6 complex formation, but not in the presence of the FGF14 mutant. Patch-clamp electrophysiology revealed that through Y158, JAK2 controls FGF14-dependent modulation of Nav1.6 channels. In hippocampal CA1 pyramidal neurons, the JAK2 inhibitor Fedratinib reduced firing by a mechanism that is dependent upon expression of FGF14.
These studies point toward a novel mechanism by which levels of JAK2 in neurons could directly influence firing and plasticity by controlling the FGF14 dimerization equilibrium, and thereby the availability of monomeric species for interaction with Nav1.6.
电压门控钠 (Nav) 通道与辅助蛋白之间的蛋白相互作用在神经元放电和可塑性中起着至关重要的作用。然而,被确定为这些分子复合物调节剂的激酶数量惊人地有限。我们假设,许多尚未确定的激酶通过调节细胞内成纤维细胞生长因子 14 (FGF14) 间接调节 Nav 通道,FGF14 是一种具有许多未探索的磷酸化基序的辅助蛋白,对于神经元中的通道功能是必需的。
在这里,我们展示了针对 FGF14:Nav1.6 复合物的细胞内高通量筛选 (HTS) 的结果,使用了 >3000 种针对广泛信号通路的不同化合物。然后使用体外磷酸化、生物物理学、质谱和膜片钳电生理学研究了顶级激酶靶标的调节作用。
针对 Janus 激酶 2 (JAK2) 的化合物在 HTS 命中中过度表达。质谱支持的磷酸化基序扫描表明,FGF14 是一个先前被证明介导 FGF14 同源二聚体化和与 Nav1.6 相互作用的位点,是 JAK2 的磷酸化位点。抑制 JAK2 后,FGF14 同源二聚体化增加,与 FGF14:Nav1.6 复合物形成直接成反比,但在存在 FGF14 突变体的情况下则不会。膜片钳电生理学表明,通过 Y158,JAK2 控制 FGF14 依赖性调节 Nav1.6 通道。在海马 CA1 锥体神经元中,JAK2 抑制剂 Fedratinib 通过一种依赖于 FGF14 表达的机制降低了放电。
这些研究表明了一种新的机制,即神经元中的 JAK2 水平可以通过控制 FGF14 二聚体平衡,从而控制单体物种与 Nav1.6 相互作用的可用性,直接影响放电和可塑性。