Hellmuth Susanne, Pöhlmann Christopher, Brown Andreas, Böttger Franziska, Sprinzl Mathias, Stemmann Olaf
From the Chairs of Genetics and.
Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany.
J Biol Chem. 2015 Mar 20;290(12):8002-10. doi: 10.1074/jbc.M114.615310. Epub 2015 Feb 6.
Sister chromatid cohesion is established during replication by entrapment of both dsDNAs within the cohesin ring complex. It is dissolved in anaphase when separase, a giant cysteine endopeptidase, cleaves the Scc1/Rad21 subunit of cohesin, thereby triggering chromosome segregation. Separase is held inactive by association with securin until this anaphase inhibitor is destroyed at the metaphase-to-anaphase transition by ubiquitin-dependent degradation. The relevant ubiquitin ligase, the anaphase-promoting complex/cyclosome, also targets cyclin B1, thereby causing inactivation of Cdk1 and mitotic exit. Although separase is essential, securin knock-out mice are surprisingly viable and fertile. Capitalizing on our previous finding that Cdk1-cyclin B1 can also bind and inhibit separase, we investigated whether this kinase might be suitable to maintain faithful timing and execution of anaphase in the absence of securin. We found that, similar to securin, Cdk1-cyclin B1 regulates separase in both a positive and negative manner. Although securin associates with nascent separase to co-translationally assist proper folding, Cdk1-cyclin B1 acts on native state separase. Upon entry into mitosis, Cdk1-cyclin B1-dependent phosphorylation of Ser-1126 renders separase prone to inactivation by aggregation/precipitation. Stable association of Cdk1-cyclin B1 with phosphorylated separase counteracts this tendency and stabilizes separase in an inhibited yet activatable state. These opposing effects are suited to prevent premature cleavage of cohesin in early mitosis while ensuring timely activation of separase by anaphase-promoting complex/cyclosome-dependent degradation of cyclin B1. Coupling sister chromatid separation with subsequent exit from mitosis by this simplified mode might have been the common scheme of mitotic control prior to the evolution of securin.
姐妹染色单体黏连在复制过程中通过将两条双链DNA捕获在黏连蛋白环复合物内而建立。在后期,当一种巨大的半胱氨酸内肽酶——分离酶切割黏连蛋白的Scc1/Rad21亚基时,黏连被溶解,从而触发染色体分离。分离酶与securin结合而保持无活性,直到这种后期抑制剂在中期到后期的转变过程中通过泛素依赖性降解被破坏。相关的泛素连接酶,即后期促进复合物/细胞周期体,也靶向细胞周期蛋白B1,从而导致Cdk1失活并退出有丝分裂。尽管分离酶是必不可少的,但令人惊讶的是,敲除securin的小鼠仍能存活且可育。利用我们之前的发现,即Cdk1-细胞周期蛋白B1也能结合并抑制分离酶,我们研究了在没有securin的情况下,这种激酶是否适合维持后期的准确时间和执行。我们发现,与securin类似,Cdk1-细胞周期蛋白B1以正负两种方式调节分离酶。尽管securin与新生的分离酶结合以共翻译方式协助其正确折叠,但Cdk1-细胞周期蛋白B1作用于天然状态的分离酶。进入有丝分裂时,Cdk1-细胞周期蛋白B1依赖性的Ser-1126磷酸化使分离酶易于因聚集/沉淀而失活。Cdk1-细胞周期蛋白B1与磷酸化的分离酶稳定结合可抵消这种趋势,并使分离酶稳定在一种受抑制但可激活的状态。这些相反的作用适合防止有丝分裂早期黏连蛋白的过早切割,同时确保通过后期促进复合物/细胞周期体依赖性的细胞周期蛋白B1降解及时激活分离酶。通过这种简化模式将姐妹染色单体分离与随后退出有丝分裂耦合起来,可能是securin进化之前有丝分裂控制的常见机制。