Suppr超能文献

生长素活性:过去、现在与未来。

Auxin activity: Past, present, and future.

作者信息

Enders Tara A, Strader Lucia C

机构信息

Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130 USA.

出版信息

Am J Bot. 2015 Feb;102(2):180-96. doi: 10.3732/ajb.1400285. Epub 2015 Jan 29.

Abstract

Long before its chemical identity was known, the phytohormone auxin was postulated to regulate plant growth. In the late 1800s, Sachs hypothesized that plant growth regulators, present in small amounts, move differentially throughout the plant to regulate growth. Concurrently, Charles Darwin and Francis Darwin were discovering that light and gravity were perceived by the tips of shoots and roots and that the stimulus was transmitted to other tissues, which underwent a growth response. These ideas were improved upon by Boysen-Jensen and Paál and were later developed into the Cholodny-Went hypothesis that tropisms were caused by the asymmetric distribution of a growth-promoting substance. These observations led to many efforts to identify this elusive growth-promoting substance, which we now know as auxin. In this review of auxin field advances over the past century, we start with a seminal paper by Kenneth Thimann and Charles Schneider titled "The relative activities of different auxins" from the American Journal of Botany, in which they compare the growth altering properties of several auxinic compounds. From this point, we explore the modern molecular understanding of auxin-including its biosynthesis, transport, and perception. Finally, we end this review with a discussion of outstanding questions and future directions in the auxin field. Over the past 100 yr, much of our progress in understanding auxin biology has relied on the steady and collective advance of the field of auxin researchers; we expect that the next 100 yr of auxin research will likewise make many exciting advances.

摘要

早在其化学特性被知晓之前,植物激素生长素就被假定用于调节植物生长。在19世纪后期,萨克斯提出假说,认为少量存在的植物生长调节剂在植物体内以不同方式移动以调节生长。与此同时,查尔斯·达尔文和弗朗西斯·达尔文发现,茎尖和根尖能够感知光和重力,并且这种刺激会传递到其他组织,这些组织会产生生长反应。博伊森 - 詹森和帕尔对这些观点进行了改进,后来发展成了 Cholodny - Went 假说,即向性运动是由一种促进生长物质的不对称分布引起的。这些观察结果促使人们做出许多努力来鉴定这种难以捉摸的促进生长物质,我们现在知道它就是生长素。在这篇关于生长素领域过去一个世纪进展的综述中,我们从肯尼斯·蒂曼和查尔斯·施奈德发表在美国《植物学杂志》上的一篇开创性论文《不同生长素的相对活性》开始,在这篇论文中他们比较了几种生长素类化合物改变生长的特性。从这一点出发,我们探索对生长素的现代分子理解——包括其生物合成、运输和感知。最后,我们以讨论生长素领域尚未解决的问题和未来方向来结束这篇综述。在过去的100年里,我们在理解生长素生物学方面取得的许多进展都依赖于生长素研究领域的稳步和集体进步;我们预计生长素研究的下一个100年同样会取得许多令人兴奋的进展。

相似文献

1
Auxin activity: Past, present, and future.
Am J Bot. 2015 Feb;102(2):180-96. doi: 10.3732/ajb.1400285. Epub 2015 Jan 29.
2
Methodological Advances in Auxin and Cytokinin Biology.
Methods Mol Biol. 2017;1569:1-29. doi: 10.1007/978-1-4939-6831-2_1.
3
What remains of the Cholodny-Went theory? Introduction.
Plant Cell Environ. 1992 Sep;15(7):761.
5
Considerations of geotropism in plants.
Life Sci Space Res. 1976;14:21-36.
6
Auxins and tropisms.
J Plant Growth Regul. 2001 Sep;20(3):226-43. doi: 10.1007/s003440010027.
7
Canalization: what the flux?
Trends Genet. 2014 Feb;30(2):41-8. doi: 10.1016/j.tig.2013.11.001. Epub 2013 Nov 30.
8
Out of Shape During Stress: A Key Role for Auxin.
Trends Plant Sci. 2018 Sep;23(9):783-793. doi: 10.1016/j.tplants.2018.05.011. Epub 2018 Jun 15.
9
Early events in geotropism of seedling shoots.
Annu Rev Plant Physiol. 1985;36:55-75. doi: 10.1146/annurev.pp.36.060185.000415.
10
Divide Et Impera--cellular auxin compartmentalization.
Curr Opin Plant Biol. 2013 Feb;16(1):78-84. doi: 10.1016/j.pbi.2012.10.005. Epub 2012 Nov 27.

引用本文的文献

4
NtLPA1 overexpression regulates the growth of tobacco and enhances resistance to blight.
Transgenic Res. 2025 Jan 9;34(1):8. doi: 10.1007/s11248-024-00420-x.
6
Identification of Potato Gene Family and Regulation of Root Development by .
Int J Mol Sci. 2024 Oct 26;25(21):11517. doi: 10.3390/ijms252111517.
7
Indole-3-Acetic Acid (IAA) and Sugar Mediate Endosperm Development in Rice (Oryza sativa L.).
Rice (N Y). 2024 Oct 24;17(1):66. doi: 10.1186/s12284-024-00745-5.
8
Nitrate Starvation Induces Lateral Root Organogenesis in via Auxin Signaling.
Int J Mol Sci. 2024 Sep 3;25(17):9566. doi: 10.3390/ijms25179566.
9
Auxin efflux carrier PsPIN4 identified through genome-wide analysis as vital factor of petal abscission.
Front Plant Sci. 2024 May 10;15:1380417. doi: 10.3389/fpls.2024.1380417. eCollection 2024.

本文引用的文献

2
Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants.
Front Physiol. 2014 May 30;5:201. doi: 10.3389/fphys.2014.00201. eCollection 2014.
3
Auxin Input Pathway Disruptions Are Mitigated by Changes in Auxin Biosynthetic Gene Expression in Arabidopsis.
Plant Physiol. 2014 Jul;165(3):1092-1104. doi: 10.1104/pp.114.236026. Epub 2014 Jun 2.
4
Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB.
Plant Cell Physiol. 2014 Aug;55(8):1450-9. doi: 10.1093/pcp/pcu077. Epub 2014 May 31.
5
Structural basis for oligomerization of auxin transcriptional regulators.
Nat Commun. 2014 Apr 7;5:3617. doi: 10.1038/ncomms4617.
6
Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression.
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5427-32. doi: 10.1073/pnas.1400074111. Epub 2014 Mar 25.
7
Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling.
Science. 2014 Feb 28;343(6174):1025-8. doi: 10.1126/science.1245125.
8
The shifting paradigms of auxin biosynthesis.
Trends Plant Sci. 2014 Jan;19(1):44-51. doi: 10.1016/j.tplants.2013.09.012.
9
In-vitro auxin binding to particulate cell fractions from corn coleoptiles.
Planta. 1972 Dec;107(4):325-40. doi: 10.1007/BF00386394.
10
Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation.
ACS Chem Biol. 2014 Mar 21;9(3):673-82. doi: 10.1021/cb400618m. Epub 2013 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验