†National Research Council Associate, National Exposure Research Laboratory, Ecosystems Research Division, U.S. Environmental Protection Agency, Athens, Georgia 30605, United States.
‡Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwan.
Environ Sci Technol. 2015 Mar 17;49(6):3435-43. doi: 10.1021/es5047155. Epub 2015 Feb 27.
Graphene oxide (GO) is promising in scalable production and has useful properties that include semiconducting behavior, catalytic reactivity, and aqueous dispersibility. In this study, we investigated the photochemical fate of GO under environmentally relevant sunlight conditions. The results indicate that GO readily photoreacts under simulated sunlight with the potential involvement of electron-hole pair creation. GO was shown to photodisproportionate to CO2, reduced materials similar to reduced GO (rGO) that are fragmented compared to the starting material, and low molecular-weight (LMW) species. Kinetic studies show that the rate of the initially rapid photoreaction of GO is insensitive to the dissolved oxygen content. In contrast, at longer time points (>10 h), the presence of dissolved oxygen led to a greater production of CO2 than the same GO material under N2-saturated conditions. Regardless, the rGO species themselves persist after extended irradiation equivalent to 2 months in natural sunlight, even in the presence of dissolved oxygen. Overall, our findings indicate that GO phototransforms rapidly under sunlight exposure, resulting in chemically reduced and persistent photoproducts that are likely to exhibit transport and toxic properties unique from parent GO.
氧化石墨烯(GO)在大规模生产方面具有很大的潜力,同时拥有一些有用的特性,包括半导体行为、催化反应性和水相分散性。在本研究中,我们研究了在环境相关的阳光条件下 GO 的光化学命运。结果表明,GO 在模拟阳光下很容易发生光反应,可能涉及电子-空穴对的产生。GO 被证明很容易光解为 CO2,还原材料类似于与起始材料相比被碎片化的还原氧化石墨烯(rGO),并产生低分子量(LMW)物质。动力学研究表明,GO 的初始快速光反应速率对溶解氧含量不敏感。相比之下,在较长的时间点(>10 h)下,溶解氧的存在导致在 N2 饱和条件下相同的 GO 材料产生更多的 CO2。无论如何,即使在溶解氧存在的情况下,rGO 物质本身在相当于 2 个月的自然光照射后仍能持续存在。总的来说,我们的研究结果表明,GO 在阳光照射下迅速光转化,产生化学还原和持久的光产物,这些产物很可能表现出与原始 GO 不同的传输和毒性特性。