Xiao Jin, Long Mengqiu, Li Mingjun, Li Xinmei, Xu Hui, Chan Kwoksum
Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410083, China.
Phys Chem Chem Phys. 2015 Mar 14;17(10):6865-73. doi: 10.1039/c4cp05199h.
We have investigated the electronic structures and carrier mobilities of MoS2 monolayer sheets and armchair nanoribbons with chemical modification using the density functional theory combined with the Boltzmann transport method with relaxation time approximation. It is shown that the hole mobility (96.62 cm(2) V(-1) s(-1)) in monolayer sheets is about twice that of the electron mobility (43.96 cm(2) V(-1) s(-1)). The charge mobilities in MoS2 armchair nanoribbons can be regulated by edge modification owing to the changing electronic structures. In pristine armchair nanoribbons, the electron and hole mobilities are about 30 cm(2) V(-1) s(-1) and 25 cm(2) V(-1) s(-1), respectively. When the edges are terminated by H or F atoms, the hole mobility will enhance obviously even 10 times that in pristine ribbons, and the electron mobility is comparable with that in MoS2 sheets.
我们使用密度泛函理论结合具有弛豫时间近似的玻尔兹曼输运方法,研究了经过化学修饰的二硫化钼单层片和扶手椅型纳米带的电子结构和载流子迁移率。结果表明,单层片中的空穴迁移率(96.62 cm² V⁻¹ s⁻¹)约为电子迁移率(43.96 cm² V⁻¹ s⁻¹)的两倍。由于电子结构的变化,二硫化钼扶手椅型纳米带中的电荷迁移率可以通过边缘修饰来调节。在原始扶手椅型纳米带中,电子和空穴迁移率分别约为30 cm² V⁻¹ s⁻¹和25 cm² V⁻¹ s⁻¹。当边缘被氢或氟原子终止时,空穴迁移率将显著提高,甚至是原始纳米带中空穴迁移率的10倍,并且电子迁移率与二硫化钼片中的相当。