Kaluka Daniel, Batabyal Dipanwita, Chiang Bing-Yu, Poulos Thomas L, Yeh Syun-Ru
Department of Physiology and Biophysics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States.
Biochemistry. 2015 Mar 3;54(8):1638-47. doi: 10.1021/bi501177e. Epub 2015 Feb 23.
Progesterone receptor membrane component 1 (PGRMC1) is a 25 kDa protein with an N-terminal transmembrane domain and a putative C-terminal cytochrome b5 domain. Heme-binding activity of PGRMC1 has been shown in various homologues of PGRMC1. Although the general definition of PGRMC1 is as a progesterone receptor, progesterone-binding activity has not been directly demonstrated in any of the purified PGRMC1 proteins fully loaded with heme. Here, we show that the human homologue of PGRMC1 (hPGRMC1) binds heme in a five-coordinate (5C) high-spin (HS) configuration, with an axial tyrosinate ligand, likely Y95. The negatively charged tyrosinate ligand leads to a relatively low redox potential of approximately -331 mV. The Y95C or Y95F mutation dramatically reduces the ability of the protein to bind heme, supporting the assignment of the axial heme ligand to Y95. On the other hand, the Y95H mutation retains ∼90% of the heme-binding activity. The heme in Y95H is also 5CHS, but it has a hydroxide axial ligand, conceivably stabilized by the engineered-in H95 via an H-bond; CO binding to the distal ligand-binding site leads to an exchange of the axial ligand to a histidine, possibly H95. We show that progesterone binds to hPGRMC1 and introduces spectral changes that manifest conformational changes to the heme. Our data offer the first direct evidence supporting progesterone-binding activity of PGRMC1.
孕酮受体膜成分1(PGRMC1)是一种25 kDa的蛋白质,具有N端跨膜结构域和假定的C端细胞色素b5结构域。PGRMC1的血红素结合活性已在PGRMC1的各种同源物中得到证实。尽管PGRMC1的一般定义是作为一种孕酮受体,但在任何完全负载血红素的纯化PGRMC1蛋白中,尚未直接证明其具有孕酮结合活性。在此,我们表明PGRMC1的人类同源物(hPGRMC1)以五配位(5C)高自旋(HS)构型结合血红素,带有一个轴向酪氨酸配体,可能是Y95。带负电荷的酪氨酸配体导致相对较低的氧化还原电位,约为 -331 mV。Y95C或Y95F突变显著降低了该蛋白结合血红素的能力,支持了轴向血红素配体为Y95的认定。另一方面,Y95H突变保留了约90%的血红素结合活性。Y95H中的血红素也是5CHS,但它有一个氢氧化物轴向配体,可以想象是通过氢键由工程改造的H95稳定的;CO与远端配体结合位点结合导致轴向配体交换为组氨酸,可能是H95。我们表明孕酮与hPGRMC1结合并引起光谱变化,这表明血红素发生了构象变化。我们的数据提供了支持PGRMC1孕酮结合活性的首个直接证据。