Villamor E, Casanova F, Trompenaars P H F, Mulders J J L
Nanotechnology. 2015 Mar 6;26(9):095303. doi: 10.1088/0957-4484/26/9/095303.
Two different room-temperature processes for the electron beam induced deposition of high purity platinum (Pt), using the standard MeCpPtMe3 precursor and oxygen for purification, have been investigated. The first process is a sequential method, which uses two independent gas injector systems (GIS) in order to perform a standard Pt deposition, followed by an e-beam post-irradiation under oxygen flux. The second process is a parallel, single-step process that includes a simultaneous flow of both precursor and oxygen, using an add-on device that can be mounted on the standard GIS needle. Both processes are effective in producing high purity Pt depositions close to 100 at%. The first method requires a high current and irradiation dose in the clean-up phase, and provides Pt structures with small voids, a maximum thickness of around 100 nm and resistivity of 88 ± 10 μΩ cm. The second method requires a high oxygen/precursor flux ratio and produces void-free structures with resistivity of 60 ± 5 μΩ cm, only six times the bulk value for Pt. The second method is easier to use and produces a void-free deposition of high purity Pt.
研究了两种不同的室温工艺,用于电子束诱导沉积高纯度铂(Pt),采用标准的甲基环戊二烯基三甲基铂前驱体并使用氧气进行纯化。第一种工艺是一种顺序方法,它使用两个独立的气体注入系统(GIS)来进行标准的Pt沉积,随后在氧气通量下进行电子束后辐照。第二种工艺是一种并行的单步工艺,它使用一个可安装在标准GIS针上的附加装置,使前驱体和氧气同时流动。两种工艺都能有效地产生接近100原子百分比的高纯度Pt沉积物。第一种方法在净化阶段需要高电流和辐照剂量,并提供具有小空隙、最大厚度约为100 nm且电阻率为88±10μΩ·cm的Pt结构。第二种方法需要高的氧/前驱体通量比,并产生无空隙结构,其电阻率为60±5μΩ·cm,仅为Pt体电阻率的六倍。第二种方法更易于使用,并能产生高纯度Pt的无空隙沉积物。