Thorman Rachel M, Kumar T P Ragesh, Fairbrother D Howard, Ingólfsson Oddur
Science Institute and Department of Chemistry, University of Iceland, Reykjavík, Iceland ; Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA.
Science Institute and Department of Chemistry, University of Iceland, Reykjavík, Iceland.
Beilstein J Nanotechnol. 2015 Sep 16;6:1904-26. doi: 10.3762/bjnano.6.194. eCollection 2015.
Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate. These low-energy electrons are abundant both inside and outside the area of the primary electron beam and are associated with reactions causing incomplete ligand dissociation from FEBID precursors. As it is not possible to directly study the effects of secondary electrons in situ in FEBID, other means must be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface studies on adsorbed precursor molecules can provide information on surface speciation and identify species desorbing from a substrate during electron irradiation under conditions more representative of FEBID. Comparing gas phase and surface science studies allows for insight into the primary deposition mechanisms for individual precursors; ideally, this information can be used to design future FEBID precursors and optimize deposition conditions. In this review, we give a summary of different low-energy electron-induced fragmentation processes that can be initiated by the secondary electrons generated in FEBID, specifically, dissociative electron attachment, dissociative ionization, neutral dissociation, and dipolar dissociation, emphasizing the different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.
聚焦电子束诱导沉积(FEBID)是一种单步直写式纳米制造技术,能够利用有机金属前驱体的电子诱导反应在表面上写入含金属的三维纳米级结构。然而,目前FEBID在分辨率方面受到限制,这是由于在一次电子束区域之外发生沉积,并且在金属纯度方面也受到限制,这是由于前驱体分解不完全。这两个限制可能部分是由前驱体分子与一次电子束与衬底相互作用产生的低能(<100 eV)二次电子的反应引起的。这些低能电子在一次电子束区域内外都大量存在,并且与导致FEBID前驱体配体解离不完全的反应有关。由于不可能在FEBID中原位直接研究二次电子的影响,因此必须使用其他方法来阐明它们的作用。在此背景下,气相研究可以通过研究与具有明确能量的单个电子相互作用的孤立分子,获得关于低能电子与FEBID前驱体诱导反应的高分辨率信息。相比之下,对吸附的前驱体分子进行超高真空表面研究可以提供关于表面形态的信息,并识别在更具FEBID代表性的条件下电子辐照期间从衬底解吸的物种。比较气相和表面科学研究可以深入了解单个前驱体的主要沉积机制;理想情况下,这些信息可用于设计未来的FEBID前驱体并优化沉积条件。在本综述中,我们总结了FEBID中产生的二次电子可以引发的不同低能电子诱导碎片化过程,具体来说,包括解离电子附着、解离电离、中性解离和偶极解离,强调了每个过程的不同性质和能量依赖性。然后,我们通过对四种常用的FEBID前驱体:甲基环戊二烯基三甲基铂(MeCpPtMe3)、四羰基铂(Pt(PF3)4)、三羰基硝酰钴(Co(CO)3NO)和六羰基钨(W(CO)6)进行比较气相和表面研究,探讨研究这些过程的价值。通过这些案例研究,很明显这种研究组合可以为FEBID中沉积物形成的潜在机制提供有价值的见解。尽管还需要进一步的实验和新方法,但这些研究是朝着更好地理解沉积过程背后的基本物理原理以及建立优化FEBID前驱体的设计标准迈出的重要一步。