Keller Lukas, Al Mamoori Mohanad K I, Pieper Jonathan, Gspan Christian, Stockem Irina, Schröder Christian, Barth Sven, Winkler Robert, Plank Harald, Pohlit Merlin, Müller Jens, Huth Michael
Institute of Physics, Goethe University, Frankfurt am Main, Frankfurt, Germany.
Graz Centre for Electron Microscopy, Graz, Austria.
Sci Rep. 2018 Apr 18;8(1):6160. doi: 10.1038/s41598-018-24431-x.
By the fabrication of periodically arranged nanomagnetic systems it is possible to engineer novel physical properties by realizing artificial lattice geometries that are not accessible via natural crystallization or chemical synthesis. This has been accomplished with great success in two dimensions in the fields of artificial spin ice and magnetic logic devices, to name just two. Although first proposals have been made to advance into three dimensions (3D), established nanofabrication pathways based on electron beam lithography have not been adapted to obtain free-form 3D nanostructures. Here we demonstrate the direct-write fabrication of freestanding ferromagnetic 3D nano-architectures. By employing micro-Hall sensing, we have determined the magnetic stray field generated by our free-form structures in an externally applied magnetic field and we have performed micromagnetic and macro-spin simulations to deduce the spatial magnetization profiles in the structures and analyze their switching behavior. Furthermore we show that the magnetic 3D elements can be combined with other 3D elements of different chemical composition and intrinsic material properties.
通过制造周期性排列的纳米磁性系统,可以通过实现人工晶格几何结构来设计新的物理特性,而这些结构是通过自然结晶或化学合成无法获得的。这在人工自旋冰和磁逻辑器件等二维领域已经取得了巨大成功,仅举这两个例子。尽管已经有人提出了向三维(3D)发展的初步建议,但基于电子束光刻的现有纳米制造方法尚未适用于获得自由形式的3D纳米结构。在这里,我们展示了独立式铁磁3D纳米结构的直写制造。通过使用微霍尔传感,我们确定了在外部施加磁场中我们的自由形式结构产生的杂散磁场,并且我们进行了微磁学和宏观自旋模拟,以推断结构中的空间磁化分布并分析其切换行为。此外,我们表明磁性3D元件可以与具有不同化学成分和固有材料特性的其他3D元件相结合。