Instituto Nacional del Carbón (CSIC), P.O. Box 73, Oviedo 33080 (Spain).
ChemSusChem. 2015 Mar;8(6):1049-57. doi: 10.1002/cssc.201403267. Epub 2015 Feb 11.
Biomass-based highly porous carbons with excellent performances in aqueous electrolyte-based supercapacitors have been developed. The synthesis of these materials is based on the chemical activation of biomass-based hydrochar. The addition of melamine to the activation mixture leads to porous carbons with a porosity consisting of micropores/small mesopores. Furthermore, melamine promotes the introduction of nitrogen heteroatoms in the carbon framework, along with abundant oxygen functionalities, to improve the wettability. The materials produced in the presence or absence of melamine exhibit high specific capacitances in aqueous electrolytes (>270 F g(-1) in H2 SO4 and >190 F g(-1) in Li2SO4). Additionally, the mesopores present in the melamine-based micro-/mesoporous carbons notably improve the ion-transport kinetics, especially in Li2SO4. Furthermore, in Li2SO4, they remain stable up to a cell voltage of 1.6 V; thus exhibiting superior energy and power characteristics than those in H2 SO4.
已开发出在基于水系电解液的超级电容器中具有优异性能的基于生物质的高多孔碳。这些材料的合成基于生物质水热炭的化学活化。在活化混合物中添加三聚氰胺会导致具有微孔/小孔的多孔碳。此外,三聚氰胺促进了氮杂原子在碳骨架中的引入,以及丰富的氧官能团,以提高润湿性。在存在或不存在三聚氰胺的情况下制备的材料在水系电解液中表现出高比电容(在 H2 SO4 中>270 F g-1,在 Li2SO4 中>190 F g-1)。此外,基于三聚氰胺的微孔/介孔碳中的中孔显著改善了离子输运动力学,特别是在 Li2SO4 中。此外,在 Li2SO4 中,它们在 1.6 V 的电池电压下保持稳定;因此,与在 H2 SO4 中相比,它们具有更高的能量和功率特性。