Lan Pei-Ling, Ni I-Chih, Wu Chih-I, Hsu Cheng-Che, Cheng I-Chun, Chen Jian-Zhang
Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan.
Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 10617, Taiwan.
Micromachines (Basel). 2023 Aug 30;14(9):1701. doi: 10.3390/mi14091701.
Pastes containing reduced graphene oxide (rGO) and LiCl-Mn(NO)·4HO are screen-printed on a carbon cloth substrate and then calcined using a nitrogen atmospheric-pressure plasma jet (APPJ) for conversion into rGO-LiMnO nanocomposites. The APPJ processing time is within 300 s. RGO-LiMnO on carbon cloth is used to sandwich HSO, LiCl, or LiSO gel electrolytes to form hybrid supercapacitors (HSCs). The areal capacitance, energy density, and cycling stability of the HSCs are evaluated using electrochemical measurement. The HSC utilizing the LiSO gel electrolyte exhibits enhanced electrode-electrolyte interface reactions and increased effective surface area due to its high pseudocapacitance (PC) ratio and lithium ion migration rate. As a result, it demonstrates the highest areal capacitance and energy density. The coupling of charges generated by embedded lithium ions with the electric double-layer capacitance (EDLC) further contributed to the significant overall capacitance enhancement. Conversely, the HSC with the HSO gel electrolyte exhibits better cycling stability. Our findings shed light on the interplay between gel electrolytes and electrode materials, offering insights into the design and optimization of high-performance HSCs.
将含有还原氧化石墨烯(rGO)和LiCl-Mn(NO)·4HO的糊剂丝网印刷在碳布基底上,然后使用氮常压等离子体射流(APPJ)进行煅烧,以转化为rGO-LiMnO纳米复合材料。APPJ处理时间在300秒以内。将碳布上的RGO-LiMnO用于夹在HSO、LiCl或LiSO凝胶电解质之间,以形成混合超级电容器(HSC)。使用电化学测量评估HSC的面积电容、能量密度和循环稳定性。利用LiSO凝胶电解质的HSC由于其高赝电容(PC)比和锂离子迁移速率,表现出增强的电极-电解质界面反应和增加的有效表面积。结果,它展示出最高的面积电容和能量密度。嵌入锂离子产生的电荷与双电层电容(EDLC)的耦合进一步显著提高了整体电容。相反,使用HSO凝胶电解质的HSC表现出更好的循环稳定性。我们的研究结果揭示了凝胶电解质与电极材料之间的相互作用,为高性能HSC的设计和优化提供了见解。