Suppr超能文献

振动能量转移:水溶液中离子配对与聚集研究中的一种埃级分子尺。

Vibrational energy transfer: an angstrom molecular ruler in studies of ion pairing and clustering in aqueous solutions.

作者信息

Chen Hailong, Bian Hongtao, Li Jiebo, Wen Xiewen, Zhang Qiang, Zhuang Wei, Zheng Junrong

机构信息

†Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States.

§Institute of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou 121000, People's Republic of China.

出版信息

J Phys Chem B. 2015 Mar 26;119(12):4333-49. doi: 10.1021/jp512320a. Epub 2015 Feb 24.

Abstract

The methodology and principle using vibrational energy transfer to measure molecular distances in liquids are introduced. The application of the method to the studies of ion pairing and clustering in strong electrolyte aqueous solutions is demonstrated with MSCN aqueous solutions where M = Li, Na, K, Cs, and NH4. Experiments suggest that ions in the concentrated aqueous solutions can form substantial quantities of ion clusters in which both cations and anions are involved. More and larger clusters form in solutions that are relatively more concentrated and which include a larger cation. In KSCN solutions, the shortest anionic distance in the ion clusters is the same as that in the KSCN crystal. The rotational time of the anion and the nonresonant vibrational energy transfer time with a gap of 75 cm(-1) in the KSCN saturated solution are very similar to those in the KSCN crystal. However, the KSCN ion clusters are closer in structure to the melt. The clusters form an interconnected network with random ionic orientations. Because of ion clustering, the anion and water dynamics behave distinctly in the same solutions. At high concentrations, the anion rotation significantly slows down because of the increase in the size of the ion clusters, but the slowdown amplitude of water rotation is very modest because many of the water molecules still remain in the "bulk" state due to ion clustering. The rotational dynamics of both water and anions are slower in a solution with a smaller cation, primarily because a smaller cation has a stronger cation/anion interaction and a cation/water interaction that leads to more water molecules confined in the ion clusters. Adding ions or molecules into the KSCN solutions can perturb the ion clusters. Weakly hydrated anions can participate in clustering and form mixed ion clusters with KSCN, and strongly hydrated anions can reduce the effective water molecules solvating KSCN and facilitate the formation of more and larger KSCN ion clusters. Similarly, molecules which can strongly bind to SCN(-) prefer to participate in the KSCN ion clusters. Molecules which are strongly hydrated prefer to remain hydrated and facilitate the ion clustering of KSCN.

摘要

介绍了利用振动能量转移测量液体中分子距离的方法和原理。以M = Li、Na、K、Cs和NH₄的硫氰酸盐水溶液为例,展示了该方法在强电解质水溶液中离子配对和聚集研究中的应用。实验表明,浓水溶液中的离子能形成大量涉及阳离子和阴离子的离子簇。在相对更浓且含有较大阳离子的溶液中会形成更多更大的簇。在硫氰化钾溶液中,离子簇中阴离子的最短距离与硫氰化钾晶体中的相同。硫氰化钾饱和溶液中阴离子的旋转时间和间隔为75厘米⁻¹的非共振振动能量转移时间与硫氰化钾晶体中的非常相似。然而,硫氰化钾离子簇的结构更接近熔体。这些簇形成具有随机离子取向的相互连接网络。由于离子簇的存在,阴离子和水的动力学在同一溶液中的表现明显不同。在高浓度下,由于离子簇尺寸的增加,阴离子旋转显著减慢,但水旋转的减慢幅度非常小,因为由于离子簇的存在,许多水分子仍处于“本体”状态。在含有较小阳离子的溶液中,水和阴离子的旋转动力学都较慢,主要是因为较小的阳离子具有更强的阳离子/阴离子相互作用和阳离子/水相互作用,导致更多水分子被限制在离子簇中。向硫氰化钾溶液中添加离子或分子会扰乱离子簇。弱水化阴离子可参与聚集并与硫氰化钾形成混合离子簇,强水化阴离子可减少溶剂化硫氰化钾的有效水分子数量并促进形成更多更大的硫氰化钾离子簇。同样,能与SCN⁻强烈结合的分子倾向于参与硫氰化钾离子簇。强水化的分子倾向于保持水化状态并促进硫氰化钾的离子聚集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验