Department of Chemistry, Rice University, Houston, Texas 77005, USA.
J Phys Chem B. 2013 Jul 3;117(26):7972-84. doi: 10.1021/jp4016646. Epub 2013 Jun 21.
Waiting time dependent rotational anisotropies of SCN(-) anions and water molecules in alkali thiocyanate (XSCN, X = Li, Na, K, Cs) aqueous solutions at various concentrations were measured with ultrafast infrared spectroscopy. It was found that cations can significantly affect the reorientational motions of both water molecules and SCN(-) anions. The dynamics are slower in a solution with a smaller cation. The reorientational time constants follow the order of Li(+) > Na(+) > K(+) ~/= Cs(+). The changes of rotational time constants of SCN(-) at various concentrations scale almost linearly with the changes of solution viscosity, but those of water molecules do not. In addition, the concentration-dependent amplitudes of dynamical changes are much more significant in the Li(+) and Na(+) solutions than those in the K(+) and Cs(+) solutions. Further investigations on the systems with the ultrafast vibrational energy exchange method and molecular dynamics simulations provide an explanation for the observations: the observed rotational dynamics are the balanced results of ion clustering and cation/anion/water direct interactions. In all the solutions at high concentrations (>5 M), substantial amounts of ions form clusters. The structural inhomogeneity in the solutions leads to distinct rotational dynamics of water and anions. The strong interactions of Li(+) and Na(+) because of their relatively large charge densities with water molecules and SCN(-) anions, in addition to the likely geometric confinements because of ion clustering, substantially slow down the rotations of SCN(-) anions and water molecules inside the ion clusters. The interactions of K(+) and Cs(+) with water or SCN(-) are much weaker. The rotations of water molecules inside ion clusters of K(+) and Cs(+) solutions are not significantly different from those of other water species so that the experimentally observed rotational relaxation dynamics are only slightly affected by the ion concentrations.
在不同浓度的碱硫氰酸盐(XSCN,X=Li、Na、K、Cs)水溶液中,通过超快红外光谱测量了 SCN(-)阴离子和水分子的依赖于等待时间的旋转各向异性。结果表明,阳离子可以显著影响水分子和 SCN(-)阴离子的重取向运动。在阳离子较小的溶液中,动力学较慢。重取向时间常数的顺序为 Li(+) > Na(+) > K(+)~=Cs(+)。在各种浓度下,SCN(-)旋转时间常数的变化几乎与溶液粘度的变化呈线性关系,但水分子的变化则不然。此外,在 Li(+)和 Na(+)溶液中,动力学变化的浓度依赖性幅度比在 K(+)和 Cs(+)溶液中大得多。通过超快振动能量交换方法和分子动力学模拟对这些体系的进一步研究为这些观察结果提供了一个解释:所观察到的旋转动力学是离子聚簇和阳离子/阴离子/水直接相互作用平衡的结果。在所有高浓度(>5 M)溶液中,大量离子形成聚簇。溶液中的结构不均匀性导致水和阴离子的旋转动力学明显不同。Li(+)和 Na(+)由于其较高的电荷密度与水分子和 SCN(-)阴离子之间的强烈相互作用,以及可能由于离子聚簇而导致的几何限制,大大减缓了 SCN(-)阴离子和水分子在离子簇内的旋转。K(+)和 Cs(+)与水或 SCN(-)的相互作用要弱得多。K(+)和 Cs(+)溶液中离子簇内水分子的旋转与其他水分子的旋转没有明显区别,因此实验观察到的旋转弛豫动力学受离子浓度的影响很小。