Suppr超能文献

纯 Lennard-Jones 液体的斯托克斯-爱因斯坦关系的显式表达式。

Explicit expression for the Stokes-Einstein relation for pure Lennard-Jones liquids.

作者信息

Ohtori Norikazu, Ishii Yoshiki

机构信息

Faculty of Science, Niigata University, 8050 Ikarashi 2-no cho, Nishi-ku, Niigata 950-2181, Japan.

Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no cho, Nishi-ku, Niigata 950-2181, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012111. doi: 10.1103/PhysRevE.91.012111. Epub 2015 Jan 7.

Abstract

An explicit expression of the Stokes-Einstein (SE) relation in molecular scale has been determined for pure Lennard-Jones (LJ) liquids on the saturated vapor line using a molecular dynamics calculation with the Green-Kubo formula, as Dη(sv)=kTξ(-1)(N/V)(1/3), where D is the self-diffusion coefficient, η(sv) the shear viscosity, k the Boltzmann constant, T the temperature, ξ the constant, and N the particle number included in the system volume V. To this end, the dependence of D and η(sv) on packing fraction, η, and T has been determined so as to complete their scaling equations. The equations for D and η(sv) in these states are m(-1/2)(N/V)(-1/3)(1-η)(4)ε(-1/2)T and m(1/2)(N/V)(2/3)(1-η)(-4)ε(1/2)T(0), respectively, where m and ε are the atomic mass and characteristic parameter of energy used in the LJ potentials, respectively. The equations can well describe the behaviors of D and η(sv) for both the LJ and the real rare-gas liquids. The obtained SE relation justifies the theoretical equation proposed by Eyring and Ree, although the value of ξ is slightly different from that given by them. The difference of the obtained expression from the original SE relation, Dη(sv)=(kT/2π)σ(-1), where σ means the particle size, is the presence of the η(1/3) term, since (N/V)(1/3)=(6/π)(1/3)σ(-1)η(1/3). Since the original SE relation is based on the fluid mechanics for continuum media, allowing the presence of voids in liquids is the origin of the η(1/3) term. Therefore, also from this viewpoint, the present expression is more justifiable in molecular scale than the original SE relation. As a result, the η(1/3) term cancels out the σ dependence from the original SE relation. The present result clearly shows that it is not necessary to attribute the deviation from the original SE relation to any temperature dependence of particle size or to introduce the fractional SE relation for pure LJ liquids. It turned out that the η dependence of both D and η(sv) is similar to that in the corresponding equations by the Enskog theory for hard sphere (HS) fluids, although the T dependence is very different, which means that the difference in the behaviors of D and η(sv) between the LJ and HS fluids are traceable simply to their temperature dependence. Although the SE relation for the HS fluids also follows Dη(sv)=kTξ(-1((N/V)(1/3), the value of ξ is significantly different from that for the LJ liquids.

摘要

利用格林 - 库博公式通过分子动力学计算,确定了饱和蒸汽线上纯 Lennard - Jones(LJ)液体在分子尺度下斯托克斯 - 爱因斯坦(SE)关系的显式表达式,即(D\eta_{(sv)} = kT\xi^{-1}(N/V)^{1/3}),其中(D)是自扩散系数,(\eta_{(sv)})是剪切粘度,(k)是玻尔兹曼常数,(T)是温度,(\xi)是常数,(N)是系统体积(V)中包含的粒子数。为此,确定了(D)和(\eta_{(sv)})对堆积分数(\eta)和(T)的依赖性,以完善它们的标度方程。这些状态下(D)和(\eta_{(sv)})的方程分别为(m^{-1/2}(N/V)^{-1/3}(1 - \eta)^4\varepsilon^{-1/2}T)和(m^{1/2}(N/V)^{2/3}(1 - \eta)^{-4}\varepsilon^{1/2}T^0),其中(m)和(\varepsilon)分别是 LJ 势中使用的原子质量和能量特征参数。这些方程能够很好地描述 LJ 液体和实际稀有气体液体中(D)和(\eta_{(sv)})的行为。所得到的 SE 关系证明了 Eyring 和 Ree 提出的理论方程是合理的,尽管(\xi)的值与他们给出的值略有不同。所得表达式与原始 SE 关系(D\eta_{(sv)} = (kT/2\pi)\sigma^{-1})(其中(\sigma)表示粒子大小)的差异在于存在(\eta^{1/3})项,因为((N/V)^{1/3} = (6/\pi)^{1/3}\sigma^{-1}\eta^{1/3})。由于原始 SE 关系基于连续介质的流体力学,允许液体中存在空隙是(\eta^{1/3})项的来源。因此,从这个角度来看,本表达式在分子尺度上比原始 SE 关系更合理。结果,(\eta^{1/3})项消除了原始 SE 关系中的(\sigma)依赖性。目前的结果清楚地表明,没有必要将与原始 SE 关系的偏差归因于粒子大小的任何温度依赖性,也没有必要为纯 LJ 液体引入分数 SE 关系。结果表明,(D)和(\eta_{(sv)})对(\eta)的依赖性与硬球(HS)流体的 Enskog 理论相应方程中的依赖性相似,尽管对(T)的依赖性非常不同,这意味着 LJ 流体和 HS 流体中(D)和(\eta_{(sv)})行为的差异仅仅可追溯到它们对温度的依赖性。尽管 HS 流体的 SE 关系也遵循(D\eta_{(sv)} = kT\xi^{-1}(N/V)^{1/3}),但(\xi)的值与 LJ 液体的显著不同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验