Weicker Lionel, Erneux Thomas, Rosin David P, Gauthier Daniel J
Optique Nonlinéaire Théorique, Université Libre de Bruxelles, Campus Plaine, CP 231, 1050 Bruxelles, Belgium and Applied Physics Research Group (APHY), Vrije Universiteit Brussel, 1050 Brussels, Belgium and OPTEL Research Group, CentraleSupélec, LMOPS (EA 4423), 2 rue Édouard Belin, 57070 Metz, France.
Optique Nonlinéaire Théorique, Université Libre de Bruxelles, Campus Plaine, CP 231, 1050 Bruxelles, Belgium.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012910. doi: 10.1103/PhysRevE.91.012910. Epub 2015 Jan 13.
An optoelectronic oscillator exhibiting a large delay in its feedback loop is studied both experimentally and theoretically. We show that multiple square-wave oscillations may coexist for the same values of the parameters (multirhythmicity). Depending on the sign of the phase shift, these regimes admit either periods close to an integer fraction of the delay or periods close to an odd integer fraction of twice the delay. These periodic solutions emerge from successive Hopf bifurcation points and stabilize at a finite amplitude following a scenario similar to Eckhaus instability in spatially extended systems. We find quantitative agreements between experiments and numerical simulations. The linear stability of the square waves is substantiated analytically by determining the stable fixed points of a map.
对一种在其反馈回路中表现出大延迟的光电振荡器进行了实验和理论研究。我们表明,对于相同的参数值,多个方波振荡可能共存(多节律性)。根据相移的符号,这些状态的周期要么接近延迟的整数分之一,要么接近延迟两倍的奇数整数分之一。这些周期解从连续的霍普夫分岔点出现,并按照类似于空间扩展系统中埃克豪斯不稳定性的情形在有限振幅处稳定下来。我们发现实验与数值模拟之间存在定量一致性。通过确定一个映射的稳定不动点,从解析上证实了方波的线性稳定性。